Applied Biochemistry and Biotechnology

, Volume 189, Issue 2, pp 345–358 | Cite as

Characterization of Glucokinase Catalysis from a Pseudo-Dimeric View

  • Hanchi Chen
  • Xiaoqing Cai
  • Anjie Xu
  • Linjiang Zhu
  • Yuele Lu
  • Xiaolong ChenEmail author
  • Shijie LiuEmail author


Glucose phosphorylation by glucokinase exhibits a sigmoidal dependency on substrate concentration regardless of its simple structure. Dimorph mechanism suggested the existence of two enzymatic states with different catalytic properties, which has been shown to be plausible by structural analysis. However, the dimorph mechanism gives rise to a complicated or non-explicit non-closed mathematical form. It is neither feasible to apply the dimorph mechanism in effector characterizations. To improve the area of glucokinase study with stronger theoretical support and less complication in computation, we proposed the investigation of the enzyme from a pseudo-dimeric angle. The proposed mechanism started from the idealization of two monomeric glucokinase as a dimeric complex, which significantly simplified the glucose phosphorylation kinetics, while the differences in enzyme reconfiguration caused by variable substrates and effectors have been successfully characterized. The study presented a simpler and more reliable way in studying the properties of glucokinase and its effectors, providing guidelines of effector developments for hyperglycemia and hypoglycemia treatment.


Glucokinase Biocatalysis Multiple substrates Kinetics Effector 


Funding Information

This study is financially support from the Zhejiang Provincial Natural Science Foundation of China (No. Y19B060022) and National Natural Science Foundation of China (No. 31601390).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they no conflict of interest.


  1. 1.
    Vinuela, E., Salas, M., & Sols, A. (1963). Glucokinase and hexokinase in liver in relation to glycogen synthesis. The Journal of Biological Chemistry, 238, 1175–1177.PubMedGoogle Scholar
  2. 2.
    González, C., Ureta, T., Sánchez, R., & Niemeyer, H. (1964). Multiple molecular forms of atp: hexose 6-phosphotransferase from rat liver. Biophysical Research Communications, 16, 347–352.CrossRefGoogle Scholar
  3. 3.
    McFarland, J., Seckinger, K., & Rizzo, M. (2017). Glucokinase mediated glucosensing in hypothalamic neurons. Biophysical Journal, 112, 443.CrossRefGoogle Scholar
  4. 4.
    Matschinsky, F. M., Glaser, B., & Magnuson, M. A. (1998). Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes, 47, 307–315.CrossRefPubMedGoogle Scholar
  5. 5.
    Agius, L. (2016). Hormonal & metabolite regulation of hepatic glucokinase. Annual Review of Nutrition, 36, 389–415.CrossRefPubMedGoogle Scholar
  6. 6.
    Basco, D., Zhang, Q., Salehi, A., Tarasov, A., Dolci, W., Herrera, P., Spiliotis, I., Berney, X., Tarussio, D., Rorsman, P., & Thorens, B. (2018). α-cell glucokinase suppresses glucose-regulated glucagon secretion. Nature Communications, 9, 546.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Glaser, B., Kesavan, P., Heyman, M., Davis, E., Cuesta, A., Buchs, A., Stanley, C. A., Thornton, P. S., Permutt, M. A., Matschinsky, F. M., & Herold, K. C. (1998). Familial hyperinsulinism caused by an activating glucokinase mutation. The New England Journal of Medicine, 338, 226–230.CrossRefPubMedGoogle Scholar
  8. 8.
    Christesen, H. B., Jacobsen, B. B., Odili, S., Buettger, C., Cuesta-Munoz, A., Hansen, T., Brusgaard, K., Massa, O., Magnuson, M. A., Shiota, C., & Matschinsky, F. M. (2002). The second activating glucokinase mutation (A456V) implications for glucose homeostasis and diabetes therapy. Diabetes, 51, 1240–1246.CrossRefPubMedGoogle Scholar
  9. 9.
    Rudland, V. L., Hinchcliffe, M., Pinner, J., Cole, S., Mercorella, B., Molyneaux, L., Constantino, M., Yue, D. K., Ross, G. P., & Wong, J. (2016). Identifying glucokinase monogenic diabetes in a multiethnic gestational diabetes mellitus cohort: new pregnancy screening criteria and utility of HbA1c. Diabetes Care, 39, 50–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Larion, M., & Miller, B. G. (2012). Homotropic allosteric regulation in monomeric mammalian glucokinase. Archives of Biochemistry and Biophysics, 519, 103–111.CrossRefPubMedGoogle Scholar
  11. 11.
    Gutierrez-Nogués, A., García-Herrero, C. M., Oriola, J., Vincent, O., & Navas, M. A. (2018). Functional characterization of MODY2 mutations in the nuclear export signal of glucokinase. Biochimica et Biophysica Acta, 1864, 2385–2394.CrossRefPubMedGoogle Scholar
  12. 12.
    Clement, K., Pueyo, M. E., Vaxillaire, M., Rakotoambinina, B., Thuillier, F., Passa, P. H., Froguel, P. H., Robert, J. J., & Velho, G. (1996). Assessment of insulin sensitivity in glucokinase-deficient subjects. Diabetologia, 39, 82–90.PubMedGoogle Scholar
  13. 13.
    Grimsby, J., Sarabu, R., Corbett, W. L., Haynes, N. E., Bizzarro, F. T., Coffey, J. W., Guertin, K. R., Hilliard, D. W., Kester, R. F., Mahaney, P. E., & Marcus, L. (2003). Allosteric activators of glucokinase: potential role in diabetes therapy. Science, 301, 370–373.CrossRefPubMedGoogle Scholar
  14. 14.
    Agius, L. (2008). Glucokinase and molecular aspects of liver glycogen metabolism. The Biochemical Journal, 414, 1–18.CrossRefPubMedGoogle Scholar
  15. 15.
    Casey, A. K., & Miller, B. G. (2016). Kinetic basis of carbohydrate-mediated inhibition of human glucokinase by the glucokinase regulatory protein. Biochem., 55, 2899–2902.CrossRefGoogle Scholar
  16. 16.
    Honardoost, M., Sarookhani, M. R., Arefian, E., & Soleimani, M. (2014). Insulin resistance associated genes and mirnas. Applied Biochemistry and Biotechnology, 174, 63–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Brouwers, M. C., Jacobs, C., Bast, A., Stehouwer, C. D., & Schaper, N. C. (2015). Modulation of glucokinase regulatory protein: a double-edged sword. Trends in Molecular Medicine, 21, 583–594.CrossRefPubMedGoogle Scholar
  18. 18.
    Farrelly, D., Brown, K. S., Tieman, A., Ren, J., Lira, S. A., Hagan, D., Gregg, R., Mookhtiar, K. A., & Hariharan, N. (1999). Mice mutant for glucokinase regulatory protein exhibit decreased liver glucokinase: a sequestration mechanism in metabolic regulation. Proceedings of the National Academy of Sciences of the United States of America, 96, 14511–14516.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kaushik, A., & Kaushik, M. (2018). Recent updates on glucokinase activators and glucokinase regulatory protein disrupters for the treatment of type 2 diabetes mellitus. Current Diabetes Reviews, 14, 1–8.Google Scholar
  20. 20.
    Těšínský, M., Šimčíková, D., & Heneberg, P. (2019). First evidence of changes in enzyme kinetics and stability of glucokinase affected by somatic cancer-associated variations. Biochimica et Biophysica Acta, Proteins Proteomics, 1867, 213–218.CrossRefPubMedGoogle Scholar
  21. 21.
    Brocklehurst, K. J., Payne, V. A., Davies, R. A., Carroll, D., Vertigan, H. L., Wightman, H. J., Aiston, S., Waddell, I. D., Leighton, B., Coghlan, M. P., & Agius, L. (2004). Stimulation of hepatocyte glucose metabolism by novel small molecule glucokinase activators. Diabetes, 53, 535–541.CrossRefPubMedGoogle Scholar
  22. 22.
    Cheruvallath, Z. S., Gwaltney, S. L., Sabat, M., Tang, M., Wang, H., Jennings, A., Hosfield, D., Lee, B., Wu, Y., Halkowycz, P., & Grimshaw, C. E. (2017). Discovery of potent and orally active 1, 4-disubstituted indazoles as novel allosteric glucokinase activators. Diabetes Obes. Metab., 27, 2678–2682.Google Scholar
  23. 23.
    Katz, L., Manamley, N., Snyder, W. J., Dodds, M., Agafonova, N., Sierra-Johnson, J., Cruz, M., Kaur, P., Mudaliar, S., Raskin, P., & Kewalramani, R. (2016). AMG 151 (ARRY-403), a novel glucokinase activator, decreases fasting and postprandial glycaemia in patients with type 2 diabetes. Diabetes, Obesity & Metabolism, 18, 191–195.CrossRefGoogle Scholar
  24. 24.
    Detheux, M., Vandercammen, A., & Van Schaftingen, E. (1991). Effectors of the regulatory protein acting on liver glucokinase: a kinetic investigation. The FEBS Journal, 200, 553–561.Google Scholar
  25. 25.
    Moukil, M., & Van-Schaftingen, E. (2001). Analysis of the cooperativity of human beta-cell glucokinase through the stimulatory effect of glucose on fructose phosphorylation. The Journal of Biological Chemistry, 276, 3872–3878.CrossRefPubMedGoogle Scholar
  26. 26.
    Lenzen, S. (2014). A fresh view of glycolysis and glucokinase regulation: history and current status. The Journal of Biological Chemistry, 289, 12189–12194.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cárdenas, M. L., Rabajille, E., & Niemeyer, H. (1978). Maintenance of the monomeric structure of glucokinase under reacting conditions. Archives of Biochemistry and Biophysics, 190, 142–148.CrossRefPubMedGoogle Scholar
  28. 28.
    Vella, A., Freeman, J. L., Dunn, I., Keller, K., Buse, J. B., & Valcarce, C. (2019). Targeting hepatic glucokinase to treat diabetes with TTP399, a hepatoselective glucokinase activator. Science Translational Medicine, 11, eaau3441.CrossRefPubMedGoogle Scholar
  29. 29.
    Kamata, K., Mitsuya, M., Nishimura, T., Eiki, J. I., & Nagata, Y. (2004). Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure, 12, 429–438.CrossRefPubMedGoogle Scholar
  30. 30.
    Niemeyer, H., De, I. L. C. M., Rabajille, E., Ureta, T., Clark-Turri, L., & Peñaranda, J. (1975). Sigmoidal kinetics of glucokinase. Enzyme, 20, 321–333.CrossRefPubMedGoogle Scholar
  31. 31.
    Larion, M., Hansen, A. L., Zhang, F., Bruschweiler-Li, L., Tugarinov, V., Miller, B. G., & Brüschweiler, R. (2015). Kinetic cooperativity in human pancreatic glucokinase originates from millisecond dynamics of the small domain. Angewandte Chemie, 127, 8247–8250.CrossRefGoogle Scholar
  32. 32.
    Matschinsky, F. M. (2002). Regulation of pancreatic β-cell glucokinase from basics to therapeutics. Diabetes, 51, 394–404.CrossRefGoogle Scholar
  33. 33.
    Petit, P., Antoine, M., Ferry, G., Boutin, J. A., Lagarde, A., Gluais, L., Vincenteli, R., & Vuillard, L. (2011). The active conformation of human glucokinase is not altered by allosteric activators. Acta Crystallographica, 67, 929–935.3Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institution of Fermentation EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.Department of Paper and Bioprocess EngineeringState University of New York College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations