Advertisement

Mesenchymal Stem Cells: a Promising Therapeutic Tool for Acute Kidney Injury

  • Rehab E. SelimEmail author
  • Hanaa H. Ahmed
  • Somia H. Abd-Allah
  • Gilane M. Sabry
  • Rasha E. Hassan
  • Wagdy K. B. Khalil
  • Nehal S. Abouhashem
Article
  • 67 Downloads

Abstract

Acute kidney injury (AKI) is a rapid loss of renal function. It has high mortality rates. Still, renal replacement therapy is considered the best solution for recovering AKI. This opens a line of thought to develop an alternative therapy for it without complications. Mesenchymal stem cells are considered a new therapy for treating kidney diseases. The aim of this work was to address the anti-apoptotic, antioxidative, and pro-angiogenic effects of adipose tissue-derived MSCs (AD-MSCs) and bone marrow-MSCs (BM-MSCs) for treating AKI. Adult male Wistar rats were assigned into nine groups (n = 10): (1) the control group; (2) the AKI group, receiving cisplatin; (3) the AKI group treated with AD-MSCs (1 × 106); (4) the AKI group treated with AD-MSCs (2 × 106); (5) the AKI group treated with AD-MSCs (4 × 106); (6) the AKI group treated with losartan; (7) the AKI group treated with BM-MSCs (1 × 106); (8) the AKI group treated with BM-MSCs (2 × 106); and (9) the AKI group treated with BM-MSCs (4 × 106). The results showed a significant rise in creatinine, urea, and cystatin C (cys C) levels and upregulation of p38 mRNA, whereas a significant decline in NAD(P)H quinone oxidoreductase 1 (NQO-1) protein and downregulation of B-cell lymphoma-2 (Bcl-2) mRNA and vascular endothelial growth factor (VEGF) mRNA were recorded in AKI. MSCs could improve renal functions manifested by decreased urea, creatinine, and cys C levels; downregulation of p38; and upregulation of Bcl-2 and VEGF. Moreover, MSC therapy could induce NQO-1 in the treated rats relative to the untreated rats. So, cell-based therapy can reduce AKI through the antioxidative, anti-apoptotic, and pro-angiogenic properties of MSCs. Therefore, the findings received in this attempt create a fertile base for the setup of cell therapy in patients with AKI.

Keywords

Acute kidney injury Cisplatin Mesenchymal stem cells Oxidative stress Apoptosis Angiogenesis 

Notes

Compliance with Ethical Standards

All experiments were performed in accordance with the National Institutes of Health guidelines and with approval from the Institutional Animal Care and Use Committee, National Research Centre, Egypt.

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Moore, P. K., Hsu, R. K., & Liu, K. D. (2018). Management of acute kidney injury: core curriculum. American Journal of Kidney Diseases, 13, 14–15.Google Scholar
  2. 2.
    Bellomo, R., Kellum, J. A., & Ronco, C. (2012). Acute kidney injury. The Lancet, 380(9843), 756–766.Google Scholar
  3. 3.
    Večerić-Haler, Ž., Cerar, A., and Perše, M. (2017). (Mesenchymal) stem cell-based therapy in cisplatin-induced acute kidney injury animal model: risk of immunogenicity and tumorigenicity. Stem Cells International, 2017.Google Scholar
  4. 4.
    Morigi, M., & Benigni, A. (2013). Mesenchymal stem cells and kidney repair. Nephrology, Dialysis, Transplantation, 28(4), 788–793.Google Scholar
  5. 5.
    Morigi, M., Rota, C., Montemurro, T., Cicero, V. L., Imberti, B., Abbate, M., Zoia, C., Cassis, P., Longaretti, L., Rebulla, P., Introna, M., Capelli, C., Benigni, A., Remuzzi, G., & Lazzari, L. (2010). Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells, 28, 513–522.Google Scholar
  6. 6.
    Chen, Y. T., Sun, C. K., Lin, Y. C., Chang, L. T., Chen, Y. L., Tsai, T. H., Chung, S. Y., Chua, S., Kao, Y. H., Yen, C. H., Shao, P. L., Chang, K. C., Leu, S., & Yip, H. K. (2011). Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. Journal of Translational Medicine, 9(1), 51.Google Scholar
  7. 7.
    Liu, X., Cai, J., Jiao, X., Yu, X., & Ding, X. (2017). Therapeutic potential of mesenchymal stem cells in acute kidney injury is affected by administration timing. Acta Biochimica et Biophysica Sinica, 49(4), 338–348.Google Scholar
  8. 8.
    Fleig, V., & Humphreys, B. D. (2014). Rationale of mesenchymal stem cell therapy in kidney injury. Nephron. Clinical Practice, 127(1-4), 75–80.Google Scholar
  9. 9.
    Meirelles, L. D. A. S., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20(5-6), 419–427.Google Scholar
  10. 10.
    Liu, H., McTaggart, S. J., Johnson, D. W., & Gobe, G. C. (2012). Original article anti-oxidant pathways are stimulated by mesenchymal stromal cells in renal repair after ischemic injury. Cytotherapy, 14(2), 162–172.Google Scholar
  11. 11.
    Sanz, L., Santos-Valle, P., Alonso-Camino, V., Salas, C., Serrano, A., Vicario, J. L., Cuesta, M. A., Compte, M., Sánchez-Martín, D., & Álvarez-Vallina, L. (2008). Long-term in vivo imaging of human angiogenesis: critical role of bone marrow derived mesenchymal stem cells for the generation of durable blood vessels. Microvascular Research, 75(3), 308–314.Google Scholar
  12. 12.
    Lennon, D. P., & Caplan, A. I. (2006). Isolation of rat marrow-derived mesenchymal stem cells. Experimental Hematology, 34(11), 1606–1607.Google Scholar
  13. 13.
    Nemmar, A., Al-Salam, S., Zia, S., Yasin, J., Al Husseni, I., & Ali, B. H. (2010). Diesel exhaust particles in the lung aggravate experimental acute renal failure. Toxicological Sciences, 113(1), 267–277.Google Scholar
  14. 14.
    Yao, W., Hu, Q., Ma, Y., Xiong, W., Wu, T., Cao, J., & Wu, D. (2015). Human adipose-derived mesenchymal stem cells repair cisplatin-induced acute kidney injury through antiapoptotic pathways. Experimental and Therapeutic Medicine, 10(2), 468–476.Google Scholar
  15. 15.
    Rastghalam, R., M. Nematbakhsh, M. Bahadorani, F. Eshraghi-Jazi, A. Talebi, M. Moeini, F. Ashrafi, S. Shirdavani (2014) Angiotensin type-1 receptor blockade may not protect kidney against cisplatin-induced nephrotoxicity in rats. Nephrology 2014.Google Scholar
  16. 16.
    Shaohua, Q. I., & Dongcheng, W. U. (2013). Bone marrow-derived mesenchymal stem cells protect against cisplatin-induced acute kidney injury in rats by inhibiting cell apoptosis. International Journal of Molecular Medicine, 32, 1262–1272.Google Scholar
  17. 17.
    Tögel, F., Weiss, K., Yang, Y., Hu, Z., Zhang, P., & Westenfelder, C. (2007). Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. American Journal of Physiology. Renal Physiology, 292, 1626–1635.Google Scholar
  18. 18.
    Nakamura, T., Sakata, R., Ueno, T., Sata, M., & Ueno, H. (2000). Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethyl nitrosamine-treated rats. Hepatology, 32(2), 247–255.Google Scholar
  19. 19.
    Bancroft, J. D., & Gamble, M. (2008). Theory and practice of histological techniques. 6th Ed. (pp. 433–469). Philadelphia: Churchill Livingstone-Elsevier.Google Scholar
  20. 20.
    Elseweidy, M. M., Askar, M. E., Elswefy, S. E., & Shawky, M. (2018). Nephrotoxicity induced by cisplatin intake in experimental rats and therapeutic approach of using mesenchymal stem cells and spironolactone. Applied Biochemistry and Biotechnology, 184(4), 1390–1403.Google Scholar
  21. 21.
    Ozkok, A., C.L. Edelstein (2014) Pathophysiology of cisplatin-induced acute kidney injury. BioMed Research International, 2014.Google Scholar
  22. 22.
    Kawai, Y., Taniuchi, S., Okahara, S., Nakamura, M., & Gemba, M. (2005). Relationship between cisplatin or nedaplatin-induced nephrotoxicity and renal accumulation. Biological & Pharmaceutical Bulletin, 28(8), 1385–1388.Google Scholar
  23. 23.
    Filipski, K. K., Mathijssen, R. H., Mikkelsen, T. S., Schinkel, A. H., & Sparreboom, A. (2009). Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clinical Pharmacology and Therapeutics, 86(4), 396–402.Google Scholar
  24. 24.
    Arany, I., & Safirstein, R. L. (2003). Cisplatin nephrotoxicity. Seminars in Nephrology, 23(5), 460–464.Google Scholar
  25. 25.
    Lew, S. W., & Bosch, J. P. (1991). Effect of diet on creatinine clearance and excretion in young and elderly healthy subjects and in patients with renal disease. Journal of the American Society of Nephrology, 2(4), 856–865.Google Scholar
  26. 26.
    Kontogiannis, J., & Burns, K. D. (1998). Role of AT1 angiotensin II receptors in renal ischemic injury. The American Journal of Physiology, 274, F79–F90.Google Scholar
  27. 27.
    Bakris, G., & Weir, M. (2000). Angiotensin converting enzyme inhibitor-associated elevations in serum creatinine. Is a cause for cancer? Archives of Internal Medicine, 160, 685–693.Google Scholar
  28. 28.
    Bianchi, F., Sala, E., Donadei, C., Capelli, I., & La Manna, G. (2014). Potential advantages of acute kidney injury management by mesenchymal stem cells. World Journal of Stem Cells, 6(5), 644–650.Google Scholar
  29. 29.
    Morigi, M., Imberti, B., Zoja, C., Corna, D., Tomasoni, S., Abbate, M., Rottoli, D., Angioletti, S., Benigni, A., Perico, N., Alison, M., & Remuzzi, G. (2004). Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. Journal of the American Society of Nephrology, 15(7), 1794–1804.Google Scholar
  30. 30.
    Bancu, I., Díaz, M. N., Serra, A., Granada, M., Lopez, D., Romero, R., & Bonet, J. (2016). Low insulin-like growth factor-1 level in obesity nephropathy: a new risk factor? PLoS One, 11(5), e0154451.Google Scholar
  31. 31.
    Sands, J. M. (2003). Mammalian urea transporters. Annual Review of Physiology, 65(1), 543–566.Google Scholar
  32. 32.
    Yang, B., & Bankir, L. (2005). Urea and urine concentrating ability: new insights from studies in mice. American Journal of Physiology. Renal Physiology, 288(5), F881–F896.Google Scholar
  33. 33.
    Bucher, M., & Taeger, K. (2002). Endothelin-receptor gene-expression in rat endotoxemia. Intensive Care Medicine, 28(5), 642–647.Google Scholar
  34. 34.
    Bucher, M., Kees, F., Taeger, K., & Kurtz, A. (2003). Cytokines down-regulate alpha1-adrenergic receptor expression during endotoxemia. Critical Care Medicine, 31(2), 566–571.Google Scholar
  35. 35.
    Liu, M., Chien, C. C., Burne-Taney, M., Molls, R. R., Racusen, L. C., Colvin, R. B., & Rabb, H. (2006). A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. Journal of the American Society of Nephrology, 17(3), 765–774.Google Scholar
  36. 36.
    Ivanov, M., Mihailović-Stanojević, N., Marković-Lipkovski, J., Jovović, Đ., Karanović, D., Miloradović, Z., & Grujić-Milanović, J. (2016). Combined angiotensin II type-1 receptor blockade and superoxide anion scavenging affect the post-ischemic kidney in hypertensive rats. Acta Veterinaria, 66(3), 392–405.Google Scholar
  37. 37.
    Kawai, Y., Nakao, T., Kunimura, N., Kohda, Y., & Gemba, M. (2006). Relationship of intracellular calcium and oxygen radicals to cisplatin-related renal cell injury. Journal of Pharmacological Sciences, 100(1), 65–72.Google Scholar
  38. 38.
    Sherif, I. O., Al-Mutabagani, L. A., Alnakhli, A. M., Sobh, M. A., & Mohammed, H. E. (2015). Renoprotective effects of angiotensin receptor blocker and stem cells in acute kidney injury: involvement of inflammatory and apoptotic markers. Experimental Biology and Medicine, 240(12), 1572–1579.Google Scholar
  39. 39.
    Kume, M., Yasui, H., Yoshikawa, Y., Horinouchi, M., Higashiguchi, K., Kobayashi, Y., Kuroda, D., Hirano, T., Hirai, M., & Nakamura, T. (2012). Transient elevation of serum cystatin C concentrations during perioperative cisplatin-based chemotherapy in esophageal cancer patients. Cancer Chemotherapy and Pharmacology, 69(6), 1537–1544.Google Scholar
  40. 40.
    Purde, M., Nock, S., Risch, L., Escobar, P. M., Grebhardt, C., Nydegger, U. E., Stanga, Z., & Risch, M. (2016). The cystatin C/creatinine ratio, a marker of glomerular filtration quality: associated factors, reference intervals, and prediction of morbidity and mortality in healthy seniors. Translational Research, 169, 80–90.Google Scholar
  41. 41.
    Deveci, K., Gokakin, A. K., Senel, S., Deveci, H., Uslu, A. U., & Sancakdar, E. (2013). Cystatin C in serum as an early marker of renal involvement in familial Mediterranean fever patients. European Review for Medical and Pharmacological Sciences, 17, 253–260.Google Scholar
  42. 42.
    Rule, A. D., Bergstralh, E. J., Slezak, J. M., Bergert, J., & Larson, T. S. (2006). Glomerular filtration rate estimated by cystatin C among different clinical presentations. Kidney International, 69(2), 399–405.Google Scholar
  43. 43.
    Murty, M. S. N., Sharma, U. K., Pandey, V. B., & Kankare, S. B. (2013). Serum cystatin C as a marker of renal function in detection of early acute kidney injury. Indian Journal of Nephrolology, 23(3), 180–183.Google Scholar
  44. 44.
    Wen, Z., Cai, M., Mai, Z., Chen, Y., Geng, D., & Wang, J. (2013). Protection of renal impairment by angiotensin II type 1 receptor blocker in rats with post-infarction heart failure. Renal Failure, 35(5), 766–775.Google Scholar
  45. 45.
    Zhang, Y., Li, Y., & Cheng, G. (2015). Effect of low-dose diuretics on the level of serum cystatin C and prognosis in patients with asymptomatic chronic heart failure. Experimental and Therapeutic Medicine, 10(6), 2345–2350.Google Scholar
  46. 46.
    Ahmed, H. H., Toson, E. A., El-mezayen, H. A., Rashed, L. A., & Elsherbiny, E. S. (2017). Role of mesenchymal stem cells versus angiotensin converting enzyme inhibitor in kidney repair. Nephrology, 22(7), 531–540.Google Scholar
  47. 47.
    Cao, S. S., Yan, M., Hou, Z. Y., Chen, Y., Jiang, Y. S., Fan, X. R., et al. (2017). Danshen modulates Nrf2-mediated signaling pathway in cisplatin-induced renal injury. Journal of Huazhong University of Science and Technology. Medical Sciences, 37(5), 761–765.Google Scholar
  48. 48.
    Yilmaz, H. R., Iraz, M., Sogut, S., Ozyurt, H., Yildirim, Z., Akyol, O., & Gergerlioglu, S. (2004). The effects of erdosteine on the activities of some metabolic enzymes during cisplatin-induced nephrotoxicity in rats. Pharmacological Research, 50(3), 287–290.Google Scholar
  49. 49.
    Dhakshinamoorthy, S., & Jaiswal, A. K. (2000). Small maf (Maf G and Maf K) proteins negatively regulate antioxidant response element-mediated expression and antioxidant induction of the NAD(P)H: quinone oxidoreductase1 gene. The Journal of Biological Chemistry, 275(51), 40134–40141.Google Scholar
  50. 50.
    Kwak, M. K., Wakabayashi, N., & Kensler, T. W. (2004). Chemoprevention through the Keap1–Nrf2 signaling pathway by phase 2 enzyme inducers. Mutation Research, 555(1–2), 133–148.Google Scholar
  51. 51.
    Kang, K. W., Lee, S. J., & Kim, S. G. (2005). Molecular mechanism of Nrf2 activation by oxidative stress. Antioxidants & Redox Signaling, 7(11-12), 1664–1673.Google Scholar
  52. 52.
    Kim, H. J., Sato, T., Rodríguez-Iturbe, B., & Vaziri, N. D. (2011). Role of intrarenal angiotensin system activation, oxidative stress, inflammation, and impaired nuclear factor-erythroid-2-related factor 2 activity in the progression of focal glomerulosclerosis. The Journal of Pharmacology and Experimental Therapeutics, 337(3), 583–590.Google Scholar
  53. 53.
    de Almeida, D. C., Oliveira, C. D., Barbosa-Costa, P., & Origassa, S. T. C. (2013). In search of mechanisms associated with mesenchymal stem cell-based therapies for acute kidney injury. Clinical Biochemist Reviews, 34, 131–144.Google Scholar
  54. 54.
    Zhuo, W., Liao, L., Xu, T., Wu, W., Yang, S., & Tan, J. (2011). Mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal dysfunction by improving the antioxidant/oxidant balance in the ischemic kidney. Urologia Internationalis, 86(2), 191–196.Google Scholar
  55. 55.
    Sahin, K., Tuzcu, M., Gencoglu, H., Doğukan, A. S., Timurkan, M., Sahin, N., Aslan, A. N., & Kucuk, O. (2010). Epigallocatechin-3gallate activates Nrf2/HO-1 signaling pathway in cisplatin induced nephrotoxicity in rats. Life Sciences, 87(7–8), 240–245.Google Scholar
  56. 56.
    Jo, S. K., Cho, W. Y., Sung, S. A., Kim, H. K., & Won, N. H. (2005). MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney International, 67(2), 458–466.Google Scholar
  57. 57.
    Ramesh, G., & Reeves, W. B. (2005). p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. American Journal of Physiology. Renal Physiology, 289(1), F166–F174.Google Scholar
  58. 58.
    Liu, H., & Baliga, R. (2003). Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney International, 63(5), 1687–1696.Google Scholar
  59. 59.
    Arany, I., Megyesi, J. K., Kaneto, H., Price, P. M., & Safirstein, R. L. (2004). Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells. American Journal of Physiology. Renal Physiology, 287(3), F543–F549.Google Scholar
  60. 60.
    Suchal, K., Malik, S., Khan, S. I., Malhotra, R. K., Goyal, S. N., Bhatia, J., et al. (2017). Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: role of AGE-RAGE/MAPK pathways. Scientific Reports, 7, 420–427.Google Scholar
  61. 61.
    Chowdhury, S., Sinha, K., Banerjee, S., & Sil, P. C. (2016). Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses. Biofactors, 42(6), 647–664.Google Scholar
  62. 62.
    Kracht, M., Shiroo, M., Marshall, C. J., Hsuan, J. J., & Saklatvala, J. (1994). Interleukin-1 activates a novel protein kinase that phosphorylates the epidermal-growth-factor receptor peptide T669. Biochem, 302(3), 897–905.Google Scholar
  63. 63.
    Hernanz, R., Beltran, A., Pérez-Girón, J. V., Martín, A., Briones, A., Palacios, R., Salaices, M., & Alonso, M. J. (2009). Activation of p38 and ERK1/2 MAPK by superoxide anion participates in angiotensin II-induced COX-2 expression in smooth muscle cells from resistance arteries. Methods and Findings in Experimental and Clinical Pharmacology, 31(Supplement A), 90–153.Google Scholar
  64. 64.
    Zhang, G. Y., Li, X., Yi, C. G., Pan, H., He, G. D., Yu, Q., Jiang, L. F., Xu, W. H., Li, Z. J., Ding, J., Lin, D. S., & Gao, W. Y. (2009). Angiotensin II activates connective tissue growth factor and induces extracellular matrix changes involving Smad/activation and p38 mitogen-activated protein kinase signaling pathways in human dermal fibroblasts. Experimental Dermatology, 18(11), 947–953.Google Scholar
  65. 65.
    Lal, A. S., Clifton, A. D., Rouse, J., Segal, A. W., & Cohen, P. (1999). Activation of the neutrophil NADPH oxidase is inhibited by SB 203580, a specific inhibitor of SAPK2/p38. Biochemical and Biophysical Research Communications, 259(2), 465–470.Google Scholar
  66. 66.
    Chan, S. H., Hsu, K. S., Huang, C. C., Wang, L. L., Ou, C. C., & Chan, J. Y. (2005). NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circulation Research, 97(8), 772–780.Google Scholar
  67. 67.
    Imberti, B., Morigi, M., & Benigni, A. (2011). Potential of mesenchymal stem cells in the repair of tubular injury. Kidney International. Supplement, 1(3), 90–93.Google Scholar
  68. 68.
    Kuo, T. K., Hung, S. P., Chuang, C. H., Chen, C. T., Shih, Y. R. V., Fang, S. C. Y., Yang, V. W., & Lee, O. K. (2008). Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology, 134(7), 2111–2121.Google Scholar
  69. 69.
    Bhandari, D. R., Kwang-Won, S., Kyoung-Hwan Roh, R., Ji-Won, J., Soo-Kyung, K., & Kyung-Sun Kang, K. (2010). REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells. PLoS One, 5(5), e10493.Google Scholar
  70. 70.
    Nebreda, A. R., & Porras, A. (2000). p38 MAP kinases: beyond the stress response. Trends in Biochemical Sciences, 25(6), 257–260.Google Scholar
  71. 71.
    Zarubin, T., & Han, J. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Research, 15(1), 11–18.Google Scholar
  72. 72.
    Haldar, S., Negrini, M., Monne, M., Sabbioni, S., & Croce, C. M. (1994). Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Research, 54, 2095–2097.Google Scholar
  73. 73.
    Thomas, A., Rouby, S. E., Reed, J. C., Stanislaw, K., Silber, R., Potmesil, M., & Newcomb, E. W. (1996). Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance. Oncogene, 12, 1055–1062.Google Scholar
  74. 74.
    Li, P. F., Dietz, R., & Von Harsdorf, R. (1999). p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. The EMBO Journal, 18(21), 6027–6036.Google Scholar
  75. 75.
    Xu, J., Xiong-wen, L., Huanga, Y., Zhua, P., & Lia, J. (2009). Synergism of simvastatin with losartan prevents angiotensin II-induced cardiomyocyte apoptosis in vitro. JPP, 61(4), 503–510.Google Scholar
  76. 76.
    Li, Z., Bing, O. H., Long, X., Robinson, K. G., & Lakatta, E. G. (1997). Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. American Journal of Physiology. Heart and Circulatory Physiology, 272(5), H2313–H2319.Google Scholar
  77. 77.
    Kim, J. H., Park, D. J., Yun, J. C., Jung, M. H., Yeo, H. D., Kim, H. J., Kim, D. W., Yang, J. I., Lee, G. W., Jeong, S. H., Roh, G. S., & Chang, S. H. (2012). Human adipose tissue-derived mesenchymal stem cells protect kidneys from cisplatin nephrotoxicity in rats. American Journal of Physiology. Renal Physiology, 302(9), F1141–F1150.Google Scholar
  78. 78.
    Molitoris, B. A., & Sutton, T. A. (2004). Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney International, 66(2), 496–499.Google Scholar
  79. 79.
    Basile, D. P., Donohoe, D., Roethe, K., & Osborn, J. A. L. (2001). Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. American Journal of Physiology. Renal Physiology, 281, 887–899.Google Scholar
  80. 80.
    Basile, D. P., Fredrich, K., Chelladurai, B., Leonard, E. C., & Parrish, A. R. (2008). Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. American Journal of Physiology. Renal Physiology, 294(4), F928–F936.Google Scholar
  81. 81.
    Zhong, X. S., Liu, L. Z., Skinner, H. D., Cao, Z., Ding, M., & Jiang, B. H. (2007). Mechanism of vascular endothelial growth factor expression mediated by cisplatin in human ovarian cancer cells. Biochemical and Biophysical Research Communications, 358(1), 92–98.Google Scholar
  82. 82.
    Forsythe, J. A., Jiang, B., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., & Semenza, G. L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604–4613.Google Scholar
  83. 83.
    Iňigo, P., Campistol, J. M., Lario, S., Piera, C., Campos, P., Oppenheimer, F., & Rivera, F. (2001). Effects of losartan and amlodipine on intrarenal hemodynamics and TGF β 1 plasma levels in a crossover trial in renal transplant recipients. Journal of the American Society of Nephrology, 12, 822–827.Google Scholar
  84. 84.
    Chua, C. C., Hamdy, R. C., & Chua, B. H. L. (2000). Mechanism of transforming growth factor-L1-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3-E1 cells. Biochimica et Biophysica Acta, 1497(1), 69–76.Google Scholar
  85. 85.
    Shima, D. T., Kuroki, M., Deutsch, U., Ng, Y. S., Adamis, A. P., & D’Amore, P. A. (1996). The mouse gene for vascular endothelial growth factor: genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. The Journal of Biological Chemistry, 271(7), 3877–3883.Google Scholar
  86. 86.
    Abdel Aziz, M. T., Wassef, M. A., Rashed, L. A., Mhfouz, S., & Omar, N. (2011). Mesenchymal stem cells therapy in acute renal failure: possible role of hepatocyte growth factor. Journal of Stem Cell Research and Therapy, 1, 109.Google Scholar
  87. 87.
    Ball, S. G., Shuttleworth, C. A., & Kielty, C. M. (2007). Mesenchymal stem cells and neovascularization: role of platelet derived growth factor receptors. Journal of Cellular and Molecular Medicine, 11(5), 1012–1030.Google Scholar
  88. 88.
    Wu, Y., Chen, L., Scott, P. G., & Tredget, E. E. (2007). Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells, 25(10), 2648–2659.Google Scholar
  89. 89.
    Bonegio, R., & Lieberthal, W. (2002). Role of apoptosis in the pathogenesis of acute renal failure. Current Opinion in Nephrology and Hypertension, 11(3), 301–308.Google Scholar
  90. 90.
    Shirwaikar, A., Malini, S., & Kumari, S. C. (2003). Protective effect of Pongamia pinnata flowers against cisplatin and gentamicin induced nephrotoxocity in rats. Indian Journal of Experimental Biology, 41(1), 58–62.Google Scholar
  91. 91.
    Hanigan, M. H., & Devaranjan, P. (2003). Cisplaitn nephrotoxicity: molecular mechanisms. Cancer Therapy, 1, 47–61.Google Scholar
  92. 92.
    Havasi, A., & Borkan, S. C. (2011). Apoptosis and acute kidney injury. Kidney International, 80(1), 29–40.Google Scholar
  93. 93.
    Mihailović-Stanojević, N., Jovović, D., Miloradović, Z., Grujić-Milanović, J., Jerkić, M., & Marković-Lipkovski, J. (2009). Reduced progression of adriamycin nephropathy in spontaneously hypertensive rats treated by losartan. Nephrology, Dialysis, Transplantation, 24(4), 1142–1150.Google Scholar
  94. 94.
    Chen, Z., Zhu, L., Zhen, Y., Li, D., Tang, B., Chen, W., & Hu, L. (2012). Anti-proteinuric effect of sulodexide in adriamycin-induced nephropathy rats. Latin American Journal of Pharmacy, 31, 963–967.Google Scholar
  95. 95.
    Tögel, F., Isaac, J., Hu, Z. M., Weiss, K., & Westenfelder, C. (2005). Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney International, 67(5), 1772–1784.Google Scholar
  96. 96.
    Li, Y., & Wingert, R. A. (2013). Regenerative medicine for the kidney: stem cell prospects and challenges. Clinical and Translational Medicine, 2(11), 1–16.Google Scholar
  97. 97.
    Li, C., Wu, X., Tong, J., Yang, X., Zhao, J., Zheng, Q., Zhao, G., & Ma, Z. (2015). Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Research & Therapy, 6(1), 55.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hormones DepartmentNational Research CentreGizaEgypt
  2. 2.Stem Cell Lab., Centre of Excellence for Advanced ScienceNational Research CentreGizaEgypt
  3. 3.Medical Biochemistry and Molecular Biology Department, Faculty of MedicineZagazig UniversityZagazigEgypt
  4. 4.Biochemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  5. 5.Cell Biology DepartmentNational Research CentreGizaEgypt
  6. 6.Pathology Department, Faculty of MedicineZagazig UniversityZagazigEgypt

Personalised recommendations