Advertisement

Utilization of a Silicone Rubber Membrane for Passive Oxygen Supply in a Microbial Fuel Cell Treating Carbon and Nitrogen from Synthetic Coke-Oven Wastewater

  • Fengyu WangEmail author
  • Hirokazu Matsubara
  • Tadashi Nittami
  • Masafumi Fujita
Article
  • 18 Downloads

Abstract

This study firstly introduced a silicone rubber membrane (SRM) into microbial fuel cell (MFC) for passive oxygen supply to simultaneously remove phenol and nitrogen from synthetic coke-oven wastewater diluted with seawater. Passive oxygen transport with biofilm on the membrane was improved by ~ 18-fold in comparison with the one without a biofilm. In addition, although the oxygen supply was passive, nitrification accounted for 34% of those aeration conditions. It was also found that silicone rubber membrane can control NO2–N and/or NO3–N production. A dual-chamber MFC treating the synthetic coke-oven wastewater achieved a maximum power density of 54 mW m−2 with a coulombic efficiency of 2.7%. We conclude that silicone rubber membrane is effective for sustainable coke-oven wastewater treatment in MFCs.

Keywords

Gas-permeable membrane Volumetric oxygen mass transfer coefficient Nitrification Phenol Seawater 

Notes

Acknowledgments

This research was supported by the Steel Foundation for Environmental Protection Technology.

Supplementary material

12010_2019_2994_MOESM1_ESM.docx (736 kb)
ESM 1 (DOCX 735 kb)

References

  1. 1.
    Chang, E.-E., Hsing, H.-J., Chiang, P.-C., Chen, M.-Y., & Shyng, J.-Y. (2008). The chemical and biological characteristics of coke-oven wastewater by ozonation. Journal of Hazardous Materials, 156(1–3), 560–567.CrossRefGoogle Scholar
  2. 2.
    Lim, B.-R., Hu, H.-Y., & Fujie, K. (2003). Biological degradation and chemical oxidation characteristics of coke-oven wastewater. Water, Air, and Soil Pollution, 146(1–4), 23–33.CrossRefGoogle Scholar
  3. 3.
    Quan, X., Wang, F., Zhao, Q., Zhao, T., & Xiang, J. (2009). Air stripping of ammonia in a water-sparged aerocyclone reactor. Journal of Hazardous Materials, 170(2–3), 983–988.CrossRefGoogle Scholar
  4. 4.
    Lim, B.-R., Hu, H.-Y., Huang, X., & Fujie, K. (2002). Effect of seawater on treatment performance and microbial population in a biofilter treating coke-oven wastewater. Process Biochemistry, 37(9), 943–948.CrossRefGoogle Scholar
  5. 5.
    Shaw, K. (1993). Biological treatment of full-strength coke plant wastewater at Geneva steel. Iron and Steel Engineer , 70(8), 29–32.Google Scholar
  6. 6.
    Li, Y., Gu, G., Zhao, J., Yu, H., Qiu, Y., & Peng, Y. (2003). Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen. Chemosphere, 52(6), 997–1005.CrossRefGoogle Scholar
  7. 7.
    Larsen, T. A., & Gujer, W. (1997). The concept of sustainable urban water management. Water Science and Technology, 35(9), 3–10.CrossRefGoogle Scholar
  8. 8.
    Logan, B. E. (2008). Microbial fuel cells. John Wiley & Sons, Inc., NJGoogle Scholar
  9. 9.
    Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482.CrossRefGoogle Scholar
  10. 10.
    Pandey, P., Shinde, V. N., Deopurkar, R. L., Kale, S. P., Patil, S. A., & Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 168, 706–723.CrossRefGoogle Scholar
  11. 11.
    Luo, H., Liu, G., Zhang, R., & Jin, S. (2009). Phenol degradation in microbial fuel cells. Chemical Engineering Journal, 147(2–3), 259–264.CrossRefGoogle Scholar
  12. 12.
    Friman, H., Schechter, A., Nitzan, Y., & Cahan, R. (2013). Phenol degradation in bio-electrochemical cells. International Biodeterioration & Biodegradation, 84, 155–160.CrossRefGoogle Scholar
  13. 13.
    Buitrón, G., & Moreno-Andrade, I. (2014). Performance of a single-chamber microbial fuel cell degrading phenol: effect of phenol concentration and external resistance. Applied Biochemistry and Biotechnology, 174(7), 2471–2481.CrossRefGoogle Scholar
  14. 14.
    Virdis, B., Rabaey, K., Yuan, Z., & Keller, J. (2008). Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research, 42(12), 3013–3024.CrossRefGoogle Scholar
  15. 15.
    Virdis, B., Rabaey, K., Rozendal, R. A., Yuan, Z., & Keller, J. (2010). Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research, 44(9), 2970–2980.CrossRefGoogle Scholar
  16. 16.
    Zhang, X., Zhu, F., Chen, L., Zhao, Q., & Tao, G. (2013). Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell. Bioresource Technology, 146, 161–168.CrossRefGoogle Scholar
  17. 17.
    Sotres, A., Cerrillo, M., Viñas, M., & Bonmatí, A. (2016). Nitrogen removal in a two-chambered microbial fuel cell: establishment of a nitrifying–denitrifying microbial community on an intermittent aerated cathode. Chemical Engineering Journal, 284, 905–916.CrossRefGoogle Scholar
  18. 18.
    Zhang, G., Zhang, H., Ma, Y., Yuan, G., Yang, F., & Zhang, R. (2014). Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation. Enzyme and Microbial Technology, 60, 56–63.CrossRefGoogle Scholar
  19. 19.
    Yan, H., Saito, T., & Regan, J. M. (2012). Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode. Water Research, 46(7), 2215–2224.CrossRefGoogle Scholar
  20. 20.
    Bronzino, J. D. (1999). The biomedical engineering handbook, Two Volume Set, 2nd ed., CRC Press:Boca Raton, FL.Google Scholar
  21. 21.
    Gong, Z., Yang, F., Liu, S., Bao, H., Hu, S., & Furukawa, K. (2007). Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox. Chemosphere, 69(5), 776–784.CrossRefGoogle Scholar
  22. 22.
    Terada, A., Yamamoto, T., Igarashi, R., Tsuneda, S., & Hirata, A. (2006). Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification. Biochemical Engineering Journal, 28(2), 123–130.CrossRefGoogle Scholar
  23. 23.
    Hu, S., Yang, F., Liu, S., & Yu, L. (2009). The development of a novel hybrid aerating membrane-anaerobic baffled reactor for the simultaneous nitrogen and organic carbon removal from wastewater. Water Research, 43(2), 381–388.CrossRefGoogle Scholar
  24. 24.
    Yu, C.-P., Liang, Z., Das, A., & Hu, Z. (2011). Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Research, 45(3), 1157–1164.CrossRefGoogle Scholar
  25. 25.
    Semmens, M. J., Dahm, K., Shanahan, J., & Christianson, A. (2003). COD and nitrogen removal by biofilms growing on gas permeable membranes. Water Research, 37(18), 4343–4350.CrossRefGoogle Scholar
  26. 26.
    Yang, Y., Li, X., Yang, X., & He, Z. (2017). Enhanced nitrogen removal by membrane-aerated nitritation-anammox in a bioelectrochemical system. Bioresource Technology, 238, 22–29.CrossRefGoogle Scholar
  27. 27.
    Smolders, G., Van der Meij, J., Van Loosdrecht, M., & Heijnen, J. (1994). Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence. Biotechnology and Bioengineering, 43(6), 461–470.CrossRefGoogle Scholar
  28. 28.
    Sueoka, K., Satoh, H., Onuki, M., & Mino, T. (2009). Microorganisms involved in anaerobic phenol degradation in the treatment of synthetic coke-oven wastewater detected by RNA stable-isotope probing. FEMS Microbiology Letters, 291(2), 169–174.CrossRefGoogle Scholar
  29. 29.
    APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: American Public Health Association.Google Scholar
  30. 30.
    Watanabe, K. (2008). Recent developments in microbial fuel cell technologies for sustainable bioenergy. Journal of Bioscience and Bioengineering, 106(6), 528–536.CrossRefGoogle Scholar
  31. 31.
    Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.CrossRefGoogle Scholar
  32. 32.
    Puig, S., Coma, M., Desloover, J., Boon, N., Colprim, J. S., & Balaguer, M. D. (2012). Autotrophic denitrification in microbial fuel cells treating low ionic strength waters. Environmental Science & Technology, 46(4), 2309–2315.CrossRefGoogle Scholar
  33. 33.
    Feng, C., Huang, L., Yu, H., Yi, X., & Wei, C. (2015). Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology. Water Research, 76, 160–170.CrossRefGoogle Scholar
  34. 34.
    Henze, M., Gujer, W., Mino, T., & Van Loosdrecht, M. C. M. (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Report No. 9. IWA publishing, London.Google Scholar
  35. 35.
    Kuntke, P., Śmiech, K., Bruning, H., Zeeman, G., Saakes, M., Sleutels, T., Hamelers, H., & Buisman, C. (2012). Ammonium recovery and energy production from urine by a microbial fuel cell. Water Research, 46(8), 2627–2636.CrossRefGoogle Scholar
  36. 36.
    Suzuki, Y., Miyahara, S., & Takeishi, K. (1990). Research on wastewater treatment method using gas permeable film. Proceedings of Environmental and Sanitary Engineering Research, 27, 65–74 (in Japanese).Google Scholar
  37. 37.
    Okabe, S., Naitoh, H., & Watanabe, Y. (1999). Spatial distributions of ammonia-oxidizing bacteria in wastewater biofilms analyzed by fluorescent in situ hybridization. Journal of Japan Society on Water Environment, 22(3), 191–198 (in Japanese).CrossRefGoogle Scholar
  38. 38.
    Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: a literature review. Water Research, 40(20), 3671–3682.CrossRefGoogle Scholar
  39. 39.
    Kugelman, I. J., & McCarty, P. L. (1965). Cation toxicity and stimulation in anaerobic waste treatment. J.Water Pollut. Control Fed., 37, 97–116.Google Scholar
  40. 40.
    Lefebvre, O., Tan, Z., Kharkwal, S., & Ng, H. Y. (2012). Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresource Technology, 112, 336–340.CrossRefGoogle Scholar
  41. 41.
    Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14), 4040–4046.CrossRefGoogle Scholar
  42. 42.
    Liu, H., Cheng, S., & Logan, B. E. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 39(2), 658–662.CrossRefGoogle Scholar
  43. 43.
    Song, T.-s., Wu, X.-y., & Zhou, C. C. (2014). Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess and Biosystems Engineering, 37(2), 133–138.CrossRefGoogle Scholar
  44. 44.
    Ter Heijne, A., Hamelers, H. V., De Wilde, V., Rozendal, R. A., & Buisman, C. J. (2006). A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environmental Science & Technology, 40(17), 5200–5205.CrossRefGoogle Scholar
  45. 45.
    Li, X. M., Cheng, K. Y., & Wong, J. W. (2013). Bioelectricity production from food waste leachate using microbial fuel cells: effect of NaCl and pH. Bioresource Technology, 149, 452–458.CrossRefGoogle Scholar
  46. 46.
    Liu, H., Cheng, S., & Logan, B. E. (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 39(14), 5488–5493.CrossRefGoogle Scholar
  47. 47.
    Henze, M., van Loosdrecht, M. C., Ekama, G. A., & Brdjanovic, D. (2008). Biological wastewatertreatment: principles, modelling and design. IWA publishing, London.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fengyu Wang
    • 1
    Email author
  • Hirokazu Matsubara
    • 2
  • Tadashi Nittami
    • 3
  • Masafumi Fujita
    • 2
  1. 1.Major in Social Infrastructure System ScienceIbaraki UniversityHitachiJapan
  2. 2.Department of Civil, Architectural and Environmental EngineeringIbaraki UniversityHitachiJapan
  3. 3.Division of Materials Science and Chemical EngineeringYokohama National UniversityYokohamaJapan

Personalised recommendations