Overexpression of the DOF-Type Transcription Factor Enhances Lipid Synthesis in Chlorella vulgaris

  • Saki Tokunaga
  • Shohei Sanda
  • Yusuke Uraguchi
  • Satoshi Nakagawa
  • Shigeki SawayamaEmail author


In the present study, DNA binding with one finger (DOF)-type transcription factors were screened from the Chlorella vulgaris genome database. The candidate DOF transcription factor was endogenously overexpressed in C. vulgaris to improve neutral lipid production. The protein expression vector contains the heat shock protein 70 and ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit promoters and self-cleaving 2A peptide to reduce the transgene-silencing effect of C. vulgaris. A total of 74 phleomycin-resistant transformants were obtained. Under nitrogen-deficient conditions, the transformant CvDOF#3 showed approximately 1.5-fold higher neutral lipid content per cell compared to the original strain and also showed a His-tagged DOF candidate protein expression of 0.6%. Microscopic observations revealed that CvDOF#3 cells were larger in size. However, the observed differences in average cell diameter between CvDOF#3 and control cells were not statistically significant. These results indicated that the protein expression vector harboring the dual promoters and the 2A peptide, when used in combination with enzymatic cell wall degradation and glass bead transformation, could be useful for transgene and protein expression in C. vulgaris. Further experiment is necessary to confirm the expression efficiency of the HSP70 and RBCS dual promoter and 2A peptide strategy after construction of homologous recombination system in C. vulgaris. Our findings suggested that the overexpression of the endogenous DOF-type transcription factor can be used for improving the lipid content in C. vulgaris.


Chlorella vulgaris DOF transcriptional factor Transgene Lipid production 



This work was partly supported by Sun Chlorella Corp.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_2990_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)


  1. 1.
    Metzger, P., & Largeau, C. (2005). Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology, 66(5), 486–496.CrossRefGoogle Scholar
  2. 2.
    Browne, D. R., Jenkins, J., Schmutz, J., Shu, S., Barry, K., Grimwood, J., Chiniquy, J., Sharma, A., Niehaus, T. D., Weiss, T. L., Koppisch, A. T., Fox, D. T., Dhungana, S., Okada, S., Chappell, J., & Devarenne, T. P. (2017). Draft nuclear genome sequence of the liquid hydrocarbon-accumulating green microalga Botryococcus braunii race B (Showa). Genome Announcements, 5(16), e00215–e00217.CrossRefGoogle Scholar
  3. 3.
    Guarnieri, M. T., Levering, J., Henard, C. A., Boore, J. L., Betenbaugh, M. J., Zengler, K., & Knoshaug, E. P. (2018). Genome sequence of the oleaginous green alga, Chlorella vulgaris UTEX 395. Frontiers in Bioengineering and Biotechnology, 6, 37.CrossRefGoogle Scholar
  4. 4.
    Matos, J., Cardoso, C., Bandarra, N. M., & Afonso, C. (2017). Microalgae as healthy ingredients for functional food: a review. Food & Function, 8(8), 2672–2685.CrossRefGoogle Scholar
  5. 5.
    Kent, M., Welladsen, H. M., Mangott, A., & Li, Y. (2015). Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One, 10(2), e0118985.CrossRefGoogle Scholar
  6. 6.
    Fitzgerald, K. C., O'Reilly, É. J., Fondell, E., Falcone, G. J., McCullough, M. L., Park, Y., Kolonel, L. N., & Ascherio, A. (2013). Intakes of vitamin C and carotenoids and risk of amyotrophic lateral sclerosis: pooled results from 5 cohort studies. Annals of Neurology, 3, 236–245.CrossRefGoogle Scholar
  7. 7.
    Fitzgerald, K. C., O'Reilly, É. J., Falcone, G. J., McCullough, M. L., Park, Y., Kolonel, L. N., & Ascherio, A. (2014). Dietary ω-3 polyunsaturated fatty acid intake and risk for amyotrophic lateral sclerosis. JAMA Neurology, 71(9), 1102–1110.CrossRefGoogle Scholar
  8. 8.
    Yang, B., Liu, J., Jiang, Y., & Chen, F. (2016). Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective. Biotechnology Journal, 11(10), 1244–1261.CrossRefGoogle Scholar
  9. 9.
    Niu, Y. F., Zhang, M. H., Xie, W. H., Li, J. N., Gao, Y. F., Yang, W. D., Liu, J. S., & Li, H. Y. (2011). A new inducible expression system in a transformed green alga, Chlorella vulgaris. Genetics and Molecular Research, 10(4), 3427–3434.CrossRefGoogle Scholar
  10. 10.
    Xue, J., Wang, L., Zhang, L., Balamurugan, S., Li, D., Zeng, H., Yang, W., Liu, J., & Li, H. (2016). The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa. Microbial Cell Factories, 15(1), 120.CrossRefGoogle Scholar
  11. 11.
    Koo, J., Park, D., & Kim, H. (2013). Expression of bovine lactoferrin N-lobe by the green alga, Chlorella vulgaris. Algae, 28(4), 379–387.CrossRefGoogle Scholar
  12. 12.
    Yang, B., Liu, J., Liu, B., Sun, P., Ma, X., Jiang, T., Wei, D., & Chen, F. (2015). Development of a stable genetic system for Chlorella vulgaris—a promising green alga for CO2 biomitigation. Algal Research, 12, 134–141.CrossRefGoogle Scholar
  13. 13.
    Cha, T. S., Yee, W., & Aziz, A. (2012). Assessment of factors affecting agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World Journal of Microbiology and Biotechnology, 28(4), 1771–1779.CrossRefGoogle Scholar
  14. 14.
    Bajhaiya, A. K., Moreira, J. Z., & Pittman, J. K. (2017). Transcriptional engineering of microalgae: Prospects for high-value chemicals. Trends in Biotechnology, 35(2), 95–99.CrossRefGoogle Scholar
  15. 15.
    Bajhaiya, A. K., Dean, A. P., Zeef, L. A., Webster, R. E., & Pittman, J. K. (2016). PSR1 is a global transcriptional regulator of phosphorus deficiency responses and carbon storage metabolism in Chlamydomonas reinhardtii. Plant Physiology, 170(3), 1216–1234.Google Scholar
  16. 16.
    Yanagisawa, S. (2002). The Dof family of plant transcription factors. Trends in Plant Science, 7(12), 555–560.CrossRefGoogle Scholar
  17. 17.
    Ibáñez-Salazar, A., Rosales-Mendoza, S., Rocha-Uribe, A., Ramírez-Alonso, J. I., Lara-Hernández, I., Hernández-Torres, A., Paz-Maldonado, L. M. T., Silva-Ramírez, A. S., Bañuelos-Hernández, B., Martínez-Salgado, J. L., & Soria-Guerra, R. E. (2014). Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. Journal of Biotechnology, 184, 27–38.CrossRefGoogle Scholar
  18. 18.
    Kindle, K. L. (1990). High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 87(3), 1228–1232.CrossRefGoogle Scholar
  19. 19.
    Packeiser, H., Lim, C., Balagurunathan, B., Wu, J., & Zhao, H. (2013). An extremely simple and effective colony PCR procedure for bacteria, yeasts, and microalgae. Applied Biochemistry and Biotechnology, 169(2), 695–700.CrossRefGoogle Scholar
  20. 20.
    Chen, W., Zhang, C., Song, L., Sommerfeld, M., & Hu, Q. (2009). A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 77(1), 41–47.CrossRefGoogle Scholar
  21. 21.
    Zhang, J., Hao, Q., Bai, L., Xu, J., Yin, W., Song, L., Xu, L., Guo, X., Fan, C., Chen, Y., Ruan, J., Hao, S., Li, Y., Wang, R. R., & Hu, Z. (2014). Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnology for Biofuels, 7(1), 128.Google Scholar
  22. 22.
    Noguero, M., Atif, R. M., Ochatt, S., & Thompson, R. D. (2013). The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Science, 209, 32–45.CrossRefGoogle Scholar
  23. 23.
    Li, Y., Han, D., Hu, G., Sommerfeld, M., & Hu, Q. (2010). Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 107(2), 258–268.CrossRefGoogle Scholar
  24. 24.
    Radakovits, R., Eduafo, P. M., & Posewitz, M. C. (2011). Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metabolic Engineering, 13(1), 89–95.CrossRefGoogle Scholar
  25. 25.
    Blaby, I. K., Glaesener, A. G., Mettler, T., Fitz-Gibbon, S. T., Gallaher, S. D., Liu, B., Boyle, N. R., Kropat, J., Stitt, M., Johnson, S., Benning, C., Pellegrini, M., Casero, D., & Merchanta, S. (2013). Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell, 25(11), 4305–4323.CrossRefGoogle Scholar
  26. 26.
    Tsai, C., Warakanont, J., Takeuchi, T., Sears, B. B., Moellering, E. R., & Benning, C. (2014). The protein compromised hydrolysis of triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America, 111(44), 15833–15838.CrossRefGoogle Scholar
  27. 27.
    Borowitzka, M. A. (1992). Algal biotechnology products and processes — matching science and economics. Journal of Applied Phycology, 4(3), 267–279.CrossRefGoogle Scholar
  28. 28.
    Schroda, M., Blöcker, D., & Beck, C. F. (2000). The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. The Plant Journal, 21(2), 121–131.CrossRefGoogle Scholar
  29. 29.
    Rasala, B. A., Lee, P. A., Shen, Z., Briggs, S. P., Mendez, M., & Mayfield, S. P. (2012). Robust expression and secretion of xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One, 7(8), 1–11.CrossRefGoogle Scholar
  30. 30.
    Büchel, C., Morris, E., Orlova, E., & Barber, J. (2001). Localisation of the PsbH subunit in photosystem II: a new approach using labelling of His-tags with a Ni2+-NTA gold cluster and single particle analysis. Journal of Molecular Biology, 312(2), 371–379.CrossRefGoogle Scholar
  31. 31.
    Morikawa, T., Uraguchi, Y., Sanda, S., Nakagawa, S., & Sawayama, S. (2018). Overexpression of DnaJ-like chaperone enhances carotenoid synthesis in Chlamydomonas reinhardtii. Applied Biochemistry and Biotechnology, 184(1), 80–91.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations