Detoxification of Hydrolysates of the Red Seaweed Gelidium amansii for Improved Bioethanol Production

  • Trung Hau Nguyen
  • In Yung Sunwoo
  • Gwi-Taek Jeong
  • Sung-Koo KimEmail author


In this study, bioethanol was produced from the seaweed Gelidium amansii as biomass through separate hydrolysis and fermentation (SHF) processes. The SHF processes examined in this study include thermal acid hydrolysis pretreatment, enzymatic saccharification, detoxification, and fermentation. Thermal acid hydrolysis pretreatment was conducted using H2SO4, with a slurry content of 8–16% and treatment time of 15–75 min. The optimal conditions for thermal acid hydrolysis pretreatment were 12% (w/v) seaweed slurry content and 180 mM H2SO4 at 121 °C for 45 min, at which 26.1 g/L galactose and 6.8 g/L glucose were produced. A monosaccharide (mainly glucose) was also obtained from the enzymatic saccharification of thermal acid hydrolysate using 16 U/mL Celluclast 1.5 L enzyme at 45 °C for 36 h. Detoxification was performed using the adsorption method with activated carbon, the overliming method with Ca (OH)2, and the ion exchange method with polyethyleneimine. Among those detoxification methods, activated carbon showed the best performance for hydroxymethylfurfural removal. Ethanol fermentation was performed using 12% (w/v) seaweed hydrolysate with Saccharomyces cerevisiae adapted to galactose as well as various detoxification treatments.


Detoxification Fermentation Enzymatic saccharification Gelidium amansii Thermal acid hydrolysis pretreatment 



This research was supported by the Basic Science Research Program of the National Research Foundation of Korea, funded by the Ministry of Education (2016R1D1A1A09918683).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Li, H., Yu, X., Jin, Y., Zhang, W., & Liu, Y. (2008). Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Bioresource Technology, 99(8), 3301–3305.Google Scholar
  2. 2.
    Manuhara, G. J., Praseptiangga, D., & Riyanto, R. A. (2016). Extraction and characterization of refined K-carrageenan of red algae [Kappaphycus alvarezii (Doty ex P.C. Silva, 1996)] originated from Karimun Jawa Islands. Aquat Procedia, 7, 106–111.Google Scholar
  3. 3.
    Yanagisawa, M., Kawai, S., & Murata, K. (2013). Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered, 4(4), 224–235.Google Scholar
  4. 4.
    Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: fundamentals toward application. Biotechnology Advances, 29(6), 675–685.Google Scholar
  5. 5.
    Park, J. H., Hong, J. Y., Jang, H. C., Oh, S. G., Kim, S. H., Yoon, J. J., & Kim, Y. J. (2012). Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresource Technology, 108, 83–88.Google Scholar
  6. 6.
    Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66(1), 10–26.Google Scholar
  7. 7.
    Ra, C. H., Kim, M. J., Jeong, G. T., & Kim, S. K. (2017). Efficient utilization of Eucheuma denticulatum hydrolysates using an activated carbon adsorption process for ethanol production in a 5-L fermentor. Bioprocess and Biosystems Engineering, 40(3), 373–381.Google Scholar
  8. 8.
    Canilha, L., Carvalho, W., das Graças Almeida Felipe, M., & Batista de Almeida Silva, J. (2008). Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Brazilian Journal Microbiology, 39(2), 333–336.Google Scholar
  9. 9.
    Chandel, A. K., Kapoor, R. K., Singh, A., & Kuhad, R. C. (2007). Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candia shehatae NCIM 3501. Bioresource Technology, 98(10), 1947–1950.Google Scholar
  10. 10.
    Palmqvist, E., & Hahn-Hägerdal, B. (2007). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74, 25–33.Google Scholar
  11. 11.
    Ranjan, R., Thust, S., Gounaris, C. E., Woo, M., Floudas, C. A., von Keitz, M., Valentas, K. J., Wei, J., & Tsapatsis, M. (2009). Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolysates for improved ethanol yield and value added product recovery. Microporous and Mesoporous Materials, 122(1-3), 143–148.Google Scholar
  12. 12.
    AOAC (Association of Official Analytical Chemists). (1995). Official methods of analysis of the Association of Official Analytical Chemists (16th ed.). Arlington: Association of Official Analytical Chemists.Google Scholar
  13. 13.
    Mandels, M., Andreotti, R., & Roche, C. (1976). Measurement of saccharifying cellulose. Biotechnology and Bioengineering Symposium, 6, 21–23.Google Scholar
  14. 14.
    Kubicek, C. P. (1982). β-glucanase excretion by Trichoderma pseudokoningii correlation with cell wall bound β-1,3-glucanase activities. Archives of Microbiology, 132(4), 349–354.Google Scholar
  15. 15.
    Cho, H. Y., Ra, C. H., & Kim, S. K. (2014). Ethanol production from seaweed. Gelidium amansii using specific sugar acclimated yeasts. Journal of Microbiology and Biotechnology, 24(2), 264–269.Google Scholar
  16. 16.
    Nguyen, T. H., Ra, C. H., Sunwoo, I. Y., Jeong, G. T., & Kim, S. K. (2016). Evaluation of galactose adapted yeasts for bioethanol production from Kappaphycus alverazii hydrolysates. Journal of Microbiology and Biotechnology, 26(7), 1259–1266.Google Scholar
  17. 17.
    Yanagisawa, M., Kawai, S., & Murata, K. (2013). Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered, 4(4), 224–235.Google Scholar
  18. 18.
    Wu, C. H., Chien, W. C., Chou, H. K., Yang, J., & Victor Lin, H. T. (2014). Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus. Journal of Microbiology and Biotechnology, 24(9), 1245–1253.Google Scholar
  19. 19.
    Redding, A. P., Wang, Z., Keshwani, D. R., & Cheng, J. (2010). High temperature diluted acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresource Technology, 102, 1415–1424.Google Scholar
  20. 20.
    Jeong, G. T., Ra, C. H., Hong, Y. K., Kim, J. K., Kong, I. S., Kim, S. K., & Park, D. H. (2015). Conversion of red-alage Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess and Biosystems Engineering, 38(2), 207–217.Google Scholar
  21. 21.
    Marger, W. H., & Siderius, M. (2002). Novel insights into the osmotic stress response of yeast. FEMS Yeast Research, 2(3), 251–257.Google Scholar
  22. 22.
    Hsu, C. L., Chang, K. S., Lai, M. Z., Chang, T. C., Chang, Y. H., & Jang, H. D. (2011). Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulose-producing Streptomyces for bioethanol production. Biomass and Bioenergy, 32, 1878–1884.Google Scholar
  23. 23.
    Nguyen, T. H., Ra, C. H., Sunwoo, I. Y., Jeong, G. T., & Kim, S. K. (2016). Evaluation of galactose adapted yeasts for bioethanol production from Kappaphycus alverazii hydrolysates. Journal of Microbiology and Biotechnology, 26(7), 1259–1266.Google Scholar
  24. 24.
    Lee, J. M., Venditti, R. A., Jameel, H., & Kenealy, W. R. (2011). Detoxification of woody hydrolysates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobicbacterium saccharolyticum. Biomass and Bioenergy, 35(1), 626–636.Google Scholar
  25. 25.
    Ra, C. H., Jung, J. H., Sunwoo, I. Y., Jeong, G. T., & Kim, S. K. (2015). Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration. Bioprocess and Biosystems Engineering, 38(6), 1201–1207.Google Scholar
  26. 26.
    Zhu, J. J., Yong, Q., Xu, Y., & Yu, S. Y. (2009). Comparative detoxification of vacuum evaporation/steam stripping combined with overliming on corn stover prehydrolyzate. 2009 International Conference on Energy and Environment Technology, 3, 240–243.Google Scholar
  27. 27.
    Chandel, A. K., Singh, O. V., Rao, L. V., Chandrasekhar, G., & Narasu, M. L. (2011). Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipites NCIM3498. Bioresource Technology, 102(2), 1709–1714.Google Scholar
  28. 28.
    Chandel, A. K., Silva, S. S., & Singh, O. V. (2011). Detoxification of lignocellulosic hydrolysates for improved bioethanol production. In M. A. S. Bernardes (Ed.), Biofuel production - recent developments and prospects, vol. 10 (pp. 225–246). Rijeka: InTech Open Access.Google Scholar
  29. 29.
    Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26(1), 89–105.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyPukyong National UniversityBusanSouth Korea

Personalised recommendations