Preparation of an Electrically Conductive Graphene Oxide/Chitosan Scaffold for Cardiac Tissue Engineering

  • Lili Jiang
  • Daoyu Chen
  • Zhen Wang
  • Zhongmin Zhang
  • Yangliu Xia
  • Hongyu Xue
  • Yong LiuEmail author


Cardiac tissue engineering is of great importance for therapeutic and pharmaceutical applications. The scaffolds that can provide electrical conductivity and structural organization will be highly beneficial for cardiac tissue engineering. Here, we developed conductive scaffolds with electrical conductivity and porous structure composed of chitosan (CS) blending with graphene oxide (GO) for cardiac tissue engineering. Our results showed that the swelling, porosity, and conductive properties of GO/CS scaffolds could be modulated via adjusting the ratio of GO to CS. More importantly, GO/CS scaffolds had a swelling ratio ranging from 23.20 to 27.38 (1000%) and their conductivity (0.134 S/m) fell in the range of reported conductivities for native cardiac tissue. Furthermore, we assessed their biological activity by seeding heart H9C2 cells in GO/CS scaffolds. Our data showed that these GO/CS scaffolds exhibited good cell viability, promotion of cell attachment and intercellular network formation, and upregulation of the cardiac-specific gene and protein expression involved in muscle conduction of electrical signals (Connexin-43). Overall, it is concluded that the GO/CS scaffolds promote the properties of cardiac tissue constructs. Our findings provide a new strategy and insight in developing new scaffolds for cardiac tissue engineering.


Cardiac tissue engineering Cardiomyocytes Conductive scaffolds Chitosan Graphene oxide 



This study was supported by the National Key Research and Development Program of China (2017YFC1702006), the National Natural Science Foundation of China [31400307], the Fundamental Research Funds for the Central Universities [DUT14RC(3)016, DUT16RC(4)73]; the Liaoning Natural Science Foundation of China [201601033]; and the General Projects of Liaoning Education Department Science and Research Foundation [L2015111].

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12010_2019_2967_MOESM1_ESM.docx (162 kb)
ESM 1 (DOCX 162 kb)


  1. 1.
    Kikuchi, K., & Poss, K. D. (2012). Cardiac regenerative capacity and mechanisms [J]. Annual Review of Cell and Developmental Biology, 28(1), 719–741.CrossRefGoogle Scholar
  2. 2.
    Dvir, T., Timko, B. P., Brigham, M. D., Naik, S. R., Karajanagi, S. S., Levy, O., Jin, H., Parker, K. K., Langer, R., & Kohane, D. S. (2011). Nanowired three-dimensional cardiac patches [J]. Nature Nanotechnology, 6(11), 720–725.CrossRefGoogle Scholar
  3. 3.
    Wang, F., & Guan, J. (2010). Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy [J]. Advanced Drug Delivery Reviews, 62(7–8), 784–797.CrossRefGoogle Scholar
  4. 4.
    Dai, X., Zhou, W., Gao, T., Liu, J., & Lieber, C. M. (2016). Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues [J]. Nature Nanotechnology, 11(9), 776–782.CrossRefGoogle Scholar
  5. 5.
    Engelmayr, G. C., Jr., Cheng, M., Bettinger, C. J., Borenstein, J. T., Langer, R., & Freed, L. E. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy [J]. Nature Materials, 7(12), 1003–1010.CrossRefGoogle Scholar
  6. 6.
    Shin, S. R., Aghaei-Ghareh-Bolagh, B., Gao, X., Nikkhah, M., Jung, S. M., Dolatshahi-Pirouz, A., Kim, S. B., Kim, S. M., Dokmeci, M. R., Tang, X. S., & Khademhosseini, A. (2014). Layer-by-layer assembly of 3D tissue constructs with functionalized graphene [J]. Advanced Functional Materials, 24(39), 6136–6144.CrossRefGoogle Scholar
  7. 7.
    Baei, P., Jalili-Firoozinezhad, S., Rajabi-Zeleti, S., Tafazzoli-Shadpour, M., Baharvand, H., & Aghdami, N. (2016). Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering [J]. Materials Science & Engineering, C: Materials for Biological Applications, 63, 131–141.CrossRefGoogle Scholar
  8. 8.
    Martins, A. M., Eng, G., Caridade, S. G., Mano, J. F., Reis, R. L., & Vunjak-Novakovic, G. (2014). Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering [J]. Biomacromolecules, 15(2), 635–643.CrossRefGoogle Scholar
  9. 9.
    Jithendra, P., Rajam, A. M., Kalaivani, T., Mandal, A. B., & Rose, C. (2013). Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications [J]. ACS Applied Materials & Interfaces, 5(15), 7291–7298.CrossRefGoogle Scholar
  10. 10.
    Choi, B., Kim, S., Lin, B., Wu, B. M., & Lee, M. (2014). Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering [J]. ACS Applied Materials & Interfaces, 6(22), 20110–20121.CrossRefGoogle Scholar
  11. 11.
    Philibert, T., Lee, B. H., & Fabien, N. (2017). Current status and new perspectives on chitin and chitosan as functional biopolymers [J]. Applied Biochemistry and Biotechnology, 181(4), 1314–1337.CrossRefGoogle Scholar
  12. 12.
    Zhang, T., Jin, L., Fang, Y., Lin, F., Sun, W., & Xiong, Z. (2014). Fabrication of biomimetic scaffolds with oriented porous morphology for cardiac tissue engineering [J]. Journal of Biomaterials and Tissue Engineering, 4(12), 1030–1039.CrossRefGoogle Scholar
  13. 13.
    Rabbani, S., Soleimani, M., Imani, M., Sahebjam, M., Ghiaseddin, A., Nassiri, S. M., Majd Ardakani, J., Tajik Rostami, M., Jalali, A., Mousanassab, B., Kheradmandi, M., & Ahmadi Tafti, S. H. (2017). Regenerating heart using a novel compound and human Wharton jelly mesenchymal stem cells [J]. Archives of Medical Research, 48(3), 228–237.CrossRefGoogle Scholar
  14. 14.
    Zhu, Y. X., Song, K. D., Jiang, S. Y., Chen, J. L., Tang, L. Z., Li, S. Y., Fan, J., Wang, Y., Zhao, J., & Liu, T. (2017). Numerical simulation of mass transfer and three-dimensional fabrication of tissue-engineered cartilages based on chitosan/gelatin hybrid hydrogel scaffold in a rotating bioreactor [J]. Applied Biochemistry and Biotechnology, 181(1), 250–266.CrossRefGoogle Scholar
  15. 15.
    Mihic, A., Cui, Z., Wu, J., Vlacic, G., Miyagi, Y., Li, S. H., Lu, S., Sung, H. W., Weisel, R. D., & Li, R. K. (2015). A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct [J]. Circulation, 132(8), 772–784.CrossRefGoogle Scholar
  16. 16.
    Seokwon, P., Flavia, V., Eichmann, S. L., Benavides, O. M., Matteo, P., & Jacot, J. G. (2014). Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart [J]. ACS Nano, 28(8), 10.Google Scholar
  17. 17.
    Liu, X., Miller, A. L., 2nd, Park, S., Waletzki, B. E., Zhou, Z., Terzic, A., et al. (2017). Functionalized carbon nanotube and graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation [J]. ACS Applied Materials & Interfaces, 9(17), 14677–14690.CrossRefGoogle Scholar
  18. 18.
    Jing, X., Mi, H.-Y., Napiwocki, B. N., Peng, X.-F., & Turng, L.-S. (2017). Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering [J]. Carbon, 125, 557–570.CrossRefGoogle Scholar
  19. 19.
    Jooyeon, P., Bokyoung, K., Jin, H., Jaewon, O., Subeom, P., Seungmi, R., et al. (2015). Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair [J]. ACS Nano, 26(9), 5.Google Scholar
  20. 20.
    Waiwijit, U., Maturos, T., Pakapongpan, S., Phokharatkul, D., Wisitsoraat, A., & Tuantranont, A. (2016). Highly cytocompatible and flexible three-dimensional graphene/polydimethylsiloxane composite for culture and electrochemical detection of L929 fibroblast cells [J]. Journal of Biomaterials Applications, 31(2), 230–240.CrossRefGoogle Scholar
  21. 21.
    Han, Y., Zeng, Q., Li, H., & Chang, J. (2013). The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels [J]. Acta Biomaterialia, 9(11), 9107–9117.CrossRefGoogle Scholar
  22. 22.
    Shamekhi, M. A., Rabiee, A., Mirzadeh, H., Mahdavi, H., Mohebbi-Kalhori, D., & Baghaban, E. M. (2017). Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications [J]. Materials Science & Engineering, C: Materials for Biological Applications, 80, 532–542.CrossRefGoogle Scholar
  23. 23.
    Wan, S., Peng, J., Li, Y., Hu, H., Jiang, L., & Cheng, Q. (2015). Use of synergistic interactions to fabricate strong, tough, and conductive artificial nacre based on graphene oxide and chitosan [J]. ACS Nano, 9(10), 9830–9836.CrossRefGoogle Scholar
  24. 24.
    Thein-Han, W. W., & Misra, R. D. (2009). Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering [J]. Acta Biomaterialia, 5(4), 1182–1197.CrossRefGoogle Scholar
  25. 25.
    Stout, D. A., Yoo, J., Santiago-Miranda, A. N., & Webster, T. J. (2012). Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application [J]. International Journal of Nanomedicine, 7, 5653–5669.Google Scholar
  26. 26.
    Roell, W., Lewalter, T., Sasse, P., Tallini, Y. N., Choi, B. R., Breitbach, M., Doran, R., Becher, U. M., Hwang, S. M., Bostani, T., von Maltzahn, J., Hofmann, A., Reining, S., Eiberger, B., Gabris, B., Pfeifer, A., Welz, A., Willecke, K., Salama, G., Schrickel, J. W., Kotlikoff, M. I., & Fleischmann, B. K. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia [J]. Nature, 450(7171), 819–824.CrossRefGoogle Scholar
  27. 27.
    Kim, Y. H., Choi, S. H., D'Avanzo, C., Hebisch, M., Sliwinski, C., Bylykbashi, E., Washicosky, K. J., Klee, J. B., Brüstle, O., Tanzi, R. E., & Kim, D. Y. (2015). A 3D human neural cell culture system for modeling Alzheimer's disease [J]. Nature Protocols, 10(7), 985–1006.CrossRefGoogle Scholar
  28. 28.
    Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., Freed, L. E., & Vunjak-Novakovic, G. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds [J]. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18129–18134.CrossRefGoogle Scholar
  29. 29.
    Pok, S., Vitale, F., Eichmann, S. L., Benavides, O. M., Pasquali, M., & Jacot, J. G. (2015). Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart [J]. ACS Nano, 8(10), 9822–9832.CrossRefGoogle Scholar
  30. 30.
    Wu, Y., Wang, L., Guo, B., & Ma, P. X. (2017). Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy [J]. ACS Nano, 11(6), 5646–5659.CrossRefGoogle Scholar
  31. 31.
    Hollister, S. (2005). Porous scaffold design for tissue engineering [J]. Nature Materials, 4(7), 518–524.CrossRefGoogle Scholar
  32. 32.
    Jang, J., Park, H. J., Kim, S. W., Kim, H., Park, J. Y., Na, S. J., Kim, H. J., Park, M. N., Choi, S. H., Park, S. H., Kim, S. W., Kwon, S. M., Kim, P. J., & Cho, D. W. (2017). 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair [J]. Biomaterials, 112, 264–274.CrossRefGoogle Scholar
  33. 33.
    You, J. O., Rafat, M., Ye, G. J., & Auguste, D. T. (2011). Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression [J]. Nano Letters, 11(9), 3643–3648.CrossRefGoogle Scholar
  34. 34.
    Shin, S. R., Jung, S. M., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S. B., et al. (2013). Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators [J]. ACS Nano, 7(3), 2369–2380.CrossRefGoogle Scholar
  35. 35.
    Gao, Y., Connell, J. P., Wadhwa, L., Ruano, R., & Jacot, J. G. (2014). Amniotic fluid-derived stem cells demonstrated cardiogenic potential in indirect co-culture with human cardiac cells [J]. Annals of Biomedical Engineering, 42(12), 2490–2500.CrossRefGoogle Scholar
  36. 36.
    Hao, T., Zhou, J., Lu, S., Yang, B., Wang, Y., Fang, W., et al. (2016). Fullerene mediates proliferation and cardiomyogenic differentiation of adipose-derived stem cells via modulation of MAPK pathway and cardiac protein expression [J]. International Journal of Nanomedicine, 11, 269–283.CrossRefGoogle Scholar
  37. 37.
    Wong Cheng, L., Lim, C. H. Y. X., Hui, S., Tang, L. A. L., Yu, W., Chwee Teck, L., et al. (2011). Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide [J]. ACS Nano, 27(5), 9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life Science and MedicineDalian University of TechnologyPanjinChina

Personalised recommendations