Advertisement

A Novel Approach to Septal Perforation Repair: Septal Cartilage Cells Induce Chondrogenesis of hASCs In Vitro

  • Ayşe Sezim Şafak
  • Ezgi Avşar Abdik
  • Hüseyin Abdik
  • Pakize Neslihan Taşlı
  • Fikrettin ŞahinEmail author
Article
  • 9 Downloads

Abstract

The aim of this study was to investigate the effect of medium harvested from septal cartilage cells on chondrogenic differentiation of adipose stem cells (hASCs) and to compare/contrast its properties to those of a commonly used standard medium formulation in terms of induction and maintenance of chondrogenic hASCs. Differentiation was carried out under three different conditions: septal cartilage medium-SCM, chondrogenic differentiation medium-CM, and 50:50 mixture of CM/SCM. Mesenchymal stem cells (MSCs) markers were determined by flow cytometry. The cytotoxic and apoptotic effects were determined by MTS and Annexin V assay, respectively. The differentiation status of the cells was confirmed by Alcian blue staining, and quantitative real-time flow cytometry showed that hASCs were positive for MSCs, negative for hematopoietic stem cells and endothelial cell surface markers. According to MTS analysis, the first condition was not toxic at any concentration tested. Annexin V assay revealed that the application of different concentrations of SCM did not result in any cell death. The Alcian blue and gene expression analyses showed that the cells in the SCM group underwent the highest cartilage cell formation. The observed increase in chondrogenesis may offer better treatment options for the cartilage defects seen in nasal septum perforation.

Keywords

Adipose stem cells Chondrogenic differentiation Septal cartilage Septal perforation 

Notes

Acknowledgement

The authors thank Burcin Keskin for her help in flow cytometry analysis and Ayşen Aslı Hızlı Deniz for help in grammar correction.

Compliance with Ethical Standards

This manuscript complies with the Ethical Rules applicable for this journal.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Akan, K., Tihan, D., Duman, U., Ozgun, Y., Erol, F., & Polat, M. (2013). Comparison of surgical Limberg flap technique and crystallized phenol application in the treatment of pilonidal sinus disease: a retrospective study. Ulusal Cerrahi Dergisi, 29, 162–166.Google Scholar
  2. 2.
    Aydoğdu, N., Taşli, P. N., Şişli, H. B., Yalvac, M. E., & Şahin, F. (2016). Role of melatonin on differentiation of mesenchymal stem cells derived from third molar germ tissue. Turkish Journal of Biology, 40, 430–442.CrossRefGoogle Scholar
  3. 3.
    Baer, P. C., & Geiger, H. (2012). Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells International, 2012, 812693.CrossRefGoogle Scholar
  4. 4.
    Bakopoulou, A., Kritis, A., Andreadis, D., Papachristou, E., Leyhausen, G., Koidis, P., Geurtsen, W., & Tsiftsoglou, A. (2015). Angiogenic potential and secretome of human apical papilla mesenchymal stem cells in various stress microenvironments. Stem Cells and Development, 24(21), 2496–2512.CrossRefGoogle Scholar
  5. 5.
    Bakopoulou, A., Apatzidou, D., Aggelidou, E., Gousopoulou, E., Leyhausen, G., Volk, J., Kritis, A., Koidis, P., & Geurtsen, W. (2017). Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties. Stem Cell Research & Therapy, 8(1), 247.CrossRefGoogle Scholar
  6. 6.
    Baptista, L. S., Silva, K. R., Pedrosa, C. S., Amaral, R. J., Belizario, J. V., Borojevic, R., & Granjeiro, J. M. (2013). Bioengineered cartilage in a scaffold-free method by human cartilage-derived progenitor cells: a comparison with human adipose-derived mesenchymal stromal cells. Artificial Organs, 37(12), 1068–1075.CrossRefGoogle Scholar
  7. 7.
    Bauge, C., & Boumediene, K. (2015). Use of adult stem cells for cartilage tissue engineering: current status and future developments. Stem Cells International, 2015, 438026.CrossRefGoogle Scholar
  8. 8.
    Chiang, M. Y., & Shah, P. (2005). Nasal septal perforation enlargement related to topical ocular steroids. British Journal of Clinical Pharmacology, 60(6), 664–665.CrossRefGoogle Scholar
  9. 9.
    Ciuffi, S., Zonefrati, R., & Brandi, M. L. (2017). Adipose stem cells for bone tissue repair. Clinical Cases in Mineral and Bone Metabolism, 14(2), 217–226.CrossRefGoogle Scholar
  10. 10.
    Cognetti, D. M., Nussenbaum, B., Brenner, M. J., Chi, D. H., McCormick, M. E., Venkatraman, G., Zhan, T., & McKinlay, A. J. (2017). Current state of overlapping, concurrent, and multiple-room surgery in otolaryngology: a national survey. Otolaryngology and Head and Neck Surgery, 157(6), 998–1004.CrossRefGoogle Scholar
  11. 11.
    De Girolamo, L., Sartori, M., Arrigoni, E., Rimondini, L., Albisetti, W., Weinstein, R., & Brini, A. (2008). Human adipose-derived stem cells as future tools in tissue regeneration: osteogenic differentiation and cell-scaffold interaction. The International Journal of Artificial Organs, 31(6), 467–479.CrossRefGoogle Scholar
  12. 12.
    do Amaral, R. J., Pedrosa C da, S. G., Kochem, M. C., da Silva, K. R., Aniceto, M., Claudio-da-Silva, C., Borojevic, R., & Baptista, L. S. (2012). Isolation of human nasoseptal chondrogenic cells: a promise for cartilage engineering. Stem Cell Research, 8(2), 292–299.CrossRefGoogle Scholar
  13. 13.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.CrossRefGoogle Scholar
  14. 14.
    El-Gamal, Y. M., & El-Sayed, S. S. (2011). Wheezing in infancy. World Allergy Organization Journal, 4(5), 85–90.CrossRefGoogle Scholar
  15. 15.
    Estes, B. T., Diekman, B. O., Gimble, J. M., & Guilak, F. (2010). Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols, 5(7), 1294–1311.CrossRefGoogle Scholar
  16. 16.
    Gargareta, V.-I., Karagiannaki, S. M., Chnaraki, M., Theodoridis, K., Katsioudi, G., Aggelidou, E., Vavilis, T., Koidis, P., Manthou, M.-E., & Chatzinikolaidou, M. (2016). Translational research for nasal septum cartilage regeneration with chondrocytes derived from differentiated human adipose mesenchymal stem cells. Aristotle University Medical Journal, 43, 1–9.Google Scholar
  17. 17.
    Grogan, S. P., Barbero, A., Diaz-Romero, J., Cleton-Jansen, A. M., Soeder, S., Whiteside, R., Hogendoorn, P. C., Farhadi, J., Aigner, T., & Martin, I. (2007). Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis & Rheumatology, 56(2), 586–595.CrossRefGoogle Scholar
  18. 18.
    Guasti, L., Prasongchean, W., Kleftouris, G., Mukherjee, S., Thrasher, A. J., Bulstrode, N. W., & Ferretti, P. (2012). High plasticity of pediatric adipose tissue-derived stem cells: Too much for selective Skeletogenic differentiation? Stem Cells Translational Medicine, 1(5), 384–395.CrossRefGoogle Scholar
  19. 19.
    Hegde, V., Meredith, D. S., Kepler, C. K., & Huang, R. C. (2012). Management of postoperative spinal infections. World Journal of Orthopedics, 3(11), 182–189.CrossRefGoogle Scholar
  20. 20.
    Hughes, D., & Song, B. (2016). Dental and nondental stem cell based regeneration of the craniofacial region: a tissue based approach. Stem Cells International, 2016, 8307195.CrossRefGoogle Scholar
  21. 21.
    Hyldig, K., Riis, S., Pennisi, C., Zachar, V., & Fink, T. (2017). Implications of extracellular matrix production by adipose tissue-derived stem cells for development of wound healing therapies. International Journal of Molecular Sciences, 18(6), 1167.CrossRefGoogle Scholar
  22. 22.
    Khatami-Moghadam, M., Khorsandi-Ashtiani, M. T., Mohagheghi, M. A., Hasibi, M., & Kouhi, A. (2012). Prophylactic antibiotics in otolaryngologic surgeries: from knowledge to practice. Iranian Journal of Otorhinolaryngology, 24(67), 79–84.Google Scholar
  23. 23.
    Marycz, K., Lewandowski, D., Tomaszewski, K. A., Henry, B. M., Golec, E. B., & Marędziak, M. (2016). Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs). PeerJ, 4, e1637.CrossRefGoogle Scholar
  24. 24.
    McCullen, S., Zhu, Y., Bernacki, S., Narayan, R., Pourdeyhimi, B., Gorga, R., & Loboa, E. (2009). Electrospun composite poly (L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomedical Materials, 4(3), 035002.CrossRefGoogle Scholar
  25. 25.
    Merceron, C., Vinatier, C., Portron, S., Masson, M., Amiaud, J., Guigand, L., Cherel, Y., Weiss, P., & Guicheux, J. (2010). Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. American Journal of Physiology. Cell Physiology, 298(2), C355–C364.CrossRefGoogle Scholar
  26. 26.
    Mollon, B., Kandel, R., Chahal, J., & Theodoropoulos, J. (2013). The clinical status of cartilage tissue regeneration in humans. Osteoarthritis and Cartilage, 21(12), 1824–1833.CrossRefGoogle Scholar
  27. 27.
    Okolicsanyi, R. K., Camilleri, E. T., Oikari, L. E., Yu, C., Cool, S. M., van Wijnen, A. J., Griffiths, L. R., & Haupt, L. M. (2015). Human mesenchymal stem cells retain multilineage differentiation capacity including neural marker expression after extended in vitro expansion. PLoS One, 10(9), e0137255.CrossRefGoogle Scholar
  28. 28.
    Ozdek, A., Bayir, O., Dundar, Y., Tatar, E. C., Saylam, G., & Korkmaz, M. H. (2014). Closure of nasal septal perforations using bilateral intranasal advancement/rotation flaps. Kulak Burun Boğaz Ihtisas Dergisi, 24(3), 123–128.CrossRefGoogle Scholar
  29. 29.
    Park, J., Suhk, J., & Nguyen, A. H. (2015). Nasal analysis and anatomy: anthropometric proportional assessment in Asians-aesthetic balance from forehead to Chin, part II. Seminars in Plastic Surgery, 29(4), 226–231.CrossRefGoogle Scholar
  30. 30.
    Prieto, P., Fernandez-Velasco, M., Fernandez-Santos, M. E., Sanchez, P. L., Terron, V., Martin-Sanz, P., Fernandez-Aviles, F., & Bosca, L. (2016). Cell expansion-dependent inflammatory and metabolic profile of human bone marrow mesenchymal stem cells. Frontiers in Physiology, 7, 548.CrossRefGoogle Scholar
  31. 31.
    Re, M., Paolucci, L., Romeo, R., & Mallardi, V. (2006). Surgical treatment of nasal septal perforations. Our experience. Acta Otorhinolaryngologica Italica, 26(2), 102–109.Google Scholar
  32. 32.
    Stromps, J. P., Paul, N. E., Rath, B., Nourbakhsh, M., Bernhagen, J., & Pallua, N. (2014). Chondrogenic differentiation of human adipose-derived stem cells: a new path in articular cartilage defect management? BioMed Research International, 2014, 740926.CrossRefGoogle Scholar
  33. 33.
    Tajudeen, B. A., Brooks, S. G., Yan, C. H., Kuan, E. C., Schwartz, J. S., Suh, J. D., Palmer, J. N., & Adappa, N. D. (2017). Quality-of-life improvement after endoscopic sinus surgery in patients with obstructive sleep apnea. Allergy and Rhinology (Providence, R.I.), 8(1), 25–31.Google Scholar
  34. 34.
    Tang, Q. O., Carasco, C. F., Gamie, Z., Korres, N., Mantalaris, A., & Tsiridis, E. (2012). Preclinical and clinical data for the use of mesenchymal stem cells in articular cartilage tissue engineering. Expert Opinion on Biological Therapy, 12(10), 1361–1382.CrossRefGoogle Scholar
  35. 35.
    Togo, T., Utani, A., Naitoh, M., Ohta, M., Tsuji, Y., Morikawa, N., Nakamura, M., & Suzuki, S. (2006). Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Laboratory Investigation, 86(5), 445–457.CrossRefGoogle Scholar
  36. 36.
    van Egmond, M. M., Rovers, M. M., Hendriks, C. T., & van Heerbeek, N. (2015). Effectiveness of septoplasty versus non-surgical management for nasal obstruction due to a deviated nasal septum in adults: study protocol for a randomized controlled trial. Trials, 16(1), 500.CrossRefGoogle Scholar
  37. 37.
    Van Osch, G. J., Van Der Veen, S. W., Burger, E. H., & Verwoerd-Verhoef, H. L. (2000). Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium. Tissue Engineering, 6(4), 321–330.CrossRefGoogle Scholar
  38. 38.
    Virkkula, P., Makitie, A. A., & Vento, S. I. (2015). Surgical outcome and complications of nasal septal perforation repair with temporal fascia and periosteal grafts. Clinical Medical Insights. Ear, Nose and Throat, 8, 7–11.CrossRefGoogle Scholar
  39. 39.
    Yildiz, K., Tasli, P. N., Sahin, F., & Guneren, E. (2016). Comparison of cellular alterations in fat cells harvested with laser-assisted liposuction and suction-assisted liposuction. The Journal of Craniofacial Surgery, 27(3), 631–635.CrossRefGoogle Scholar
  40. 40.
    Zhang, X., Wu, M., Zhang, W., Shen, J., & Liu, H. (2010). Differentiation of human adipose-derived stem cells induced by recombinantly expressed fibroblast growth factor 10 in vitro and in vivo. In Vitro Cellular & Developmental Biology. Animal, 46(1), 60–71.CrossRefGoogle Scholar
  41. 41.
    Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., & Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ayşe Sezim Şafak
    • 1
  • Ezgi Avşar Abdik
    • 1
  • Hüseyin Abdik
    • 1
  • Pakize Neslihan Taşlı
    • 1
  • Fikrettin Şahin
    • 1
    Email author
  1. 1.Faculty of Engineering and Architecture, Department of Genetics and BioengineeringYeditepe UniversityIstanbulTurkey

Personalised recommendations