Advertisement

Fabrication of Organic Hec Nanocomposites Modified with Lysine as a Potential Adsorbent for Bilirubin Removal

  • Chan Li
  • Wen ZhangEmail author
  • Ning Yang
  • Qing Song Zhang
Article
  • 31 Downloads

Abstract

As one of the typical phyllosilicate clays, hectorite (Hec) has some excellent characteristics and has been greatly applied in adsorption field for the removal of dye, endotoxin, etc. In this study, organic Hec nanocomposites modified with l-Lysine (Lys/Hec NCs) were prepared via solution intercalation method for BR removal. The effects of ionic strength, pH values, initial concentration of BR, and BSA concentration on the adsorption capacity for BR of Lys/Hec NCs were investigated. Results indicated that the adsorption capacity for BR of nanocomposites could reach 40 mg/g when the initial bilirubin concentration was 200 mg/L. However, the adsorption amount of Lys/Hec NCs decreased with increasing the concentration of BSA, but Lys/Hec NCs could still maintain a higher adsorption rate. The adsorption kinetics and adsorption isotherms indicated that the adsorption process of Lys/Hec NCs agreed well with the pseudo-second-order model and the Langmuir isotherm, respectively. Moreover, Lys/Hec NCs also exhibited excellent cytocompatibility. These obtained results demonstrate that Lys/Hec NCs prepared in this study had great potential to be used in hemoperfusion.

Keywords

Bilirubin Organic hectoric Lysine Nanocomposite Adsorbent 

Notes

Funding information

This study was financially supported by Tianjin Science and Technology Major Projects (no. 16ZXMJSY00130) and Tianjin Science and Technology Popularization Project (no. 17KPXMSF00100).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chandy, T., & Sharma, C. P. (1992). Polylysine-immobilized chitosan beads as adsorbents for bilirubin. Artificial Organs, 16(6), 568–576.CrossRefGoogle Scholar
  2. 2.
    Zunszain, P. A., Ghuman, J., McDonagh, A. F., & Curry, S. (2008). Crystallographic analysis of human serum albumin complexed with 4z,15e-bilirubin-ix alpha. Journal of Molecular Biology, 381(2), 394–406.CrossRefGoogle Scholar
  3. 3.
    Ma, C. F., Gao, Q., Zhou, J., Chen, Q. X., Han, B., Xia, K. S., & Zhou, C. G. (2017). Facile one-pot synthesis of magnetic nitrogen-doped porous carbon for high-performance bilirubin removal from BSA-rich solution. RSC Advances, 7(4), 2081–2091.CrossRefGoogle Scholar
  4. 4.
    Chou, S., & Syu, M. (2009). Via zinc(II) protoporphyrin to the synthesis of poly(ZnPPMAA- EGDMA) for the imprinting and selective binding of bilirubin. Biomaterials, 30(7), 1255–1262.CrossRefGoogle Scholar
  5. 5.
    Bonnett, R., Davies, J. E., Hursthouse, M. B., & Sheldrick, G. M. (1978). The structure of bilirubin. Proceedings of the Royal Society of London, Series B: Biological Sciences, 202, 249–268.Google Scholar
  6. 6.
    Wei, H. L., Xu, L., Ren, J., & Jia, L. Y. (2012). Adsorption of bilirubin to magnetic multi-walled carbon nanotubes as a potential application in bound solute dialysis. Colloids Surf A:Physicochemical and Engineering, 405, 38–44.CrossRefGoogle Scholar
  7. 7.
    AL-Hamdi, A. M. H., Williams, J. R., AL-Kindy, S. M. Z., & Pillay, A. E. (2006). Optimization of a high-performance liquid chromatography method to quantify bilirubin and separate it from its photoproducts. Applied Biochemistry and Biotechnology, 135(3), 209–218.CrossRefGoogle Scholar
  8. 8.
    Kim, J. Y., Lee, D. Y., Kang, S., Miao, W., Kim, H., Lee, Y., & Jon, S. (2017). Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury. Biomaterials, 133, 1–10.CrossRefGoogle Scholar
  9. 9.
    Baydemir, G., Andaç, M., Bereli, N., Say, R., & Denizli, A. (2007). Selective removal of bilirubin from human plasma with bilirubin-imprinted particles. Industrial and Engineering Chemistry Research, 46(9), 2843–2852.CrossRefGoogle Scholar
  10. 10.
    Wang, Z., Cao, Y., Wei, H., Jia, L., Xu, L., & Xie, J. (2012). Bilirubin adsorption properties of water-soluble adsorbents with different cyclodextrin cavities in plasma dialysis system. Colloids and Surfaces B: Biointerfaces, 90, 248–253.CrossRefGoogle Scholar
  11. 11.
    Timin, A. S., Solomonov, A. V., Musabirov, I. I., Sergeev, S. N., Ivanov, S. P., & Rumyantsev, E. V. (2015). Characterization and evaluation of silica particles coated by PVP and albumin for effective bilirubin removal. Journal of Sol-Gel Science and Technology, 74(1), 187–198.CrossRefGoogle Scholar
  12. 12.
    Timin, A., Rumyantsev, E., Lanin, S. N., Rychkov, S. A., Guseynov, S. S., Solomonov, A. V., & Antin, E. V. (2014). Preparation and surface properties of mesoporous silica particles modified with poly(N-vinyl-2-pyrrolidone) as a potential adsorbent for bilirubin removal. Materials Chemistry and Physics, 147(3), 673–683.CrossRefGoogle Scholar
  13. 13.
    Timin, A., Rumyantsev, E., & Solomonov, A. (2014). Synthesis and application of aminomodified silicas containing albumin as hemoadsorbents for bilirubin adsorption. Journal of Non-Crystalline Solids, 385, 81–88.CrossRefGoogle Scholar
  14. 14.
    Xia, B. L., Zhang, G. L., & Zhang, F. B. (2003). Bilirubin removal by Cibacron Blue F3GA attached nylon-based hydrophilic affinity membrane. Journal of Membrane Science, 226(1-2), 9–20.CrossRefGoogle Scholar
  15. 15.
    Shi, W., Zhang, F., & Zhang, G. (2005). Adsorption of bilirubin with polylysine carrying chitosan-coated nylon affinity membranes. Journal of Chromatography B, 819(2), 301–306.CrossRefGoogle Scholar
  16. 16.
    Jiang, X., Zhou, D., Huang, X., Zhao, W., & Zhao, C. (2017). Hexanediamine functionalized poly (glycidyl methacrylate-co-N-vinylpyrrolidone) particles for bilirubin removal. Journal of Colloid and Interface Science, 504, 214–222.CrossRefGoogle Scholar
  17. 17.
    Jiang, X., Xiang, T., Xie, Y., Wang, R., Zhao, W. F., Sun, S. D., & Zhao, C. S. (2016). Functional polyethersulfone particles for the removal of bilirubin. Journal of Materials Science: Materials in Medicine, 27, 1–12.Google Scholar
  18. 18.
    Zhao, R., Li, X., Sun, B., Li, Y., Li, Y., Yang, R., & Wang, C. (2017). Branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane: a novel and effective adsorbent for Cr(VI) remediation in waste water. Journal of Materials Chemistry A, 5(3), 1133–1144.CrossRefGoogle Scholar
  19. 19.
    Zhao, R., Li, Y. M., Li, X., Li, Y. Z., Sun, B. L., Chao, S., & Wang, C. (2018). Facile hydrothermal synthesis of branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane as a highly efficient and reusable bilirubin adsorbent in hemoperfusion. Journal of Colloid and Interface Science, 514, 675–685.CrossRefGoogle Scholar
  20. 20.
    Tang, T., Li, X., Xu, Y., Wu, D., Sun, Y., Xu, J., & Deng, F. (2011). Bilirubin adsorption onamine/methyl bifunctionalized SBA-15 with platelet morphology. Colloids and Surfaces B: Biointerfaces, 84(2), 571–578.CrossRefGoogle Scholar
  21. 21.
    Chen, J., Cheng, G. H., Chai, Y. M., Han, W. Y., Zong, W. H., Chen, J., Li, C. R., Wang, W. C., Ou, L. L., & Yu, Y. T. (2018). Preparation of nano-CaCO3/polystyrene nanocomposite beads for efficient bilirubin removal. Colloids and Surfaces B: Biointerfaces, 161, 480–487.CrossRefGoogle Scholar
  22. 22.
    Kahr, G., & Madsen, F. T. (1995). Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Applied Clay Science, 9(5), 327–336.CrossRefGoogle Scholar
  23. 23.
    Guimarães, A. M. F., Ciminelli, V. S. T., & Vasconcelos, W. L. (2009). Smectite organo functionalized with thiol groups for adsorption of heavy metal ions. Applied Clay Science, 42, 410–414.CrossRefGoogle Scholar
  24. 24.
    Okada, T., Takeda, Y., Watanabe, N., Haeiwa, T., Sakai, T., & Mishima, S. (2014). Chemically stablemagnetic nanoparticles formetal adsorption and solid acid catalysis in aqueous media. Journal of Materials Chemistry A, 2(16), 5751–5758.CrossRefGoogle Scholar
  25. 25.
    Ju, J., & Chang, J. H. (2014). Characterizations of poly(ester imide) nanocomposites containing organically modified hectorite. Macromolecular Research, 22(5), 549–556.CrossRefGoogle Scholar
  26. 26.
    Kaviratna, P. D., Pinnavaia, T. J., & Schroeder, P. A. (1996). Dielectric properties of smectite clays. Journal of Physics and Chemistry of Solids, 57(12), 1897–1906.CrossRefGoogle Scholar
  27. 27.
    Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2014). Antibiotic eluting clay mineral (Laponite) for wound healing application: an in vitro study. Journal of Materials Science: Materials in Medicine, 25(11), 2513–2526.Google Scholar
  28. 28.
    Sethia, G., Patel, H. A., Pawar, R. R., & Bajaj, H. C. (2014). Porous synthetic hectorites for selective adsorption of carbon dioxide over nitrogen, methane, carbon monoxide and oxygen. Applied Clay Science, 91-92, 63–69.CrossRefGoogle Scholar
  29. 29.
    Phothitontimongkol, T., Sanuwong, K., Siebers, N., Sukpirom, N., & Unob, F. (2013). Functionalized hectorite clay mineral for Ag(I) ions extraction from wastewater and preparation of silver nanoparticles supported clay. Applied Clay Science, 80-81, 346–350.CrossRefGoogle Scholar
  30. 30.
    Patil, S. N., Paradeshi, J. S., Chaudhari, P. B., Mishra, S. J., & Chaudhari, B. L. (2016). Bio-therapeutic potential and cytotoxicity assessment of pectin-mediated synthesized nanostructured cerium oxide. Applied Biochemistry and Biotechnology, 180(4), 638–654.CrossRefGoogle Scholar
  31. 31.
    Peng, Z., Yang, Y., Luo, J., Nie, C., Ma, L., Cheng, C., & Zhao, C. (2016). Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal. Biomaterials Science, 4(9), 1392–1401.CrossRefGoogle Scholar
  32. 32.
    Meena, R., Rani, M., Pal, R., & Rajamani, P. (2012). Nano-TiO2-induced apoptosis by oxidative stress-mediated DNA damage and activation of p53 in human embryonic kidney cells. Applied Biochemistry and Biotechnology, 167(4), 791–808.CrossRefGoogle Scholar
  33. 33.
    Kabir, S. R., Nabi, M. M., Nurujjaman, M., Reza, M. R., Alam, A. H. M. K., Zaman, R. U., Khalid-Bin-Ferdaus, K. M., Amin, R., Khan, M. M. H., Hossain, M. A., Uddin, M. S., & Mahmud, Z. H. (2015). Momordica charantia seed lectin: toxicity, bacterial agglutination and antitumor properties. Applied Biochemistry and Biotechnology, 175(5), 2616–2628.CrossRefGoogle Scholar
  34. 34.
    Brunier, B., Sheibat-Othman, N., Chevalier, Y., & Bourgeat-Lami, E. (2016). Partitioning of laponite clay platelets in pickering emulsion polymerization. Langmuir, 32(1), 112–124.CrossRefGoogle Scholar
  35. 35.
    Li, Z., Chang, P. H., Jiang, W. T., Jean, J. S., & Hong, H. (2011). Mechanism of methylene blue removal from water by swelling clays. Chemical Engineering Journal, 168(3), 1193–1200.CrossRefGoogle Scholar
  36. 36.
    Sawant, S. Y., Pawar, R. R., Somani, R. S., & Bajaj, H. C. (2014). Facile hard template approach for synthetic hectorite hollow microspheres. Materials Letters, 128, 121–124.CrossRefGoogle Scholar
  37. 37.
    Zhang, W., Fu, H. L., Li, X. Y., Zhang, H., Wang, N., Li, W., & Zhang, X. X. (2016). Molecularly imprinted polymer doped with Hectorite for selective recognition of sinomenine hydrochloride. Journal of Biomaterials Science. Polymer Edition, 27(2), 144–156.CrossRefGoogle Scholar
  38. 38.
    Wan, T., Zou, C. Z., Wang, L., Wu, D. Q., Cheng, W. Z., Li, R. X., & Xu, M. (2015). Hectorite effects on swelling and gel properties of hectorite/poly(AM/IA) nanocomposite hydrogels. Polymer Bulletin, 72(5), 1113–1125.CrossRefGoogle Scholar
  39. 39.
    Wang, S. G., Zheng, F. Y., Huang, Y. P., Fang, Y. T., Shen, M. W., Zhu, M. F., & Shi, X. Y. (2012). Encapsulation of amoxicillin within laponite-doped poly(lactic-coglycolic acid) nanofibers: preparation, characterization, and antibacterial activity. ACS Applied Materials & Interfaces, 4(11), 6393–6401.CrossRefGoogle Scholar
  40. 40.
    Song, C. F., Zhang, A. F., Shi, W., Jiang, H. R., & Ge, D. T. (2011). Functionalized silica nanotubes as affinity matrices for bilirubin removal. IEEE Transactions on Nanotechnology, 10(3), 626–631.CrossRefGoogle Scholar
  41. 41.
    Rustemeier, O., & Killmann, E. (1997). Electrostatic interactions and stability of poly-L-lysine covered polystyrene latex particles investigated by dynamic light scattering. Journal of Colloid and Interface Science, 190(2), 360–370.CrossRefGoogle Scholar
  42. 42.
    Tang, T., Zhao, Y., Xu, Y., Wu, D., Xu, J., & Deng, F. (2011). Functionalized SBA-15 materials for bilirubin adsorption. Applied Surface Science, 257(14), 6004–6009.CrossRefGoogle Scholar
  43. 43.
    Roca, L., Calligaris, S., Wennberg, R. P., Ahlfors, C. E., Malik, S. G., Ostrow, J. D., & Tiribelli, C. (2006). Factors affecting the binding of bilirubin to serum albumins: validation and application of the peroxidase method. Pediatric Research, 60(6), 724–728.CrossRefGoogle Scholar
  44. 44.
    Wei, H., Han, L., Tang, Y., Ren, J., Zhao, Z., & Jia, L. (2015). Highly flexible heparin-modified chitosan/graphene oxide hybrid hydrogel as a super bilirubin adsorbent with excellent hemocompatibility. Journal of Materials Chemistry B, 3(8), 1646–1654.CrossRefGoogle Scholar
  45. 45.
    Brodersen, R. (1979). Bilirubin solubility and interaction with albumin and phospholipid. The Journal of Biological Chemistry, 254(7), 2364–2369.Google Scholar
  46. 46.
    Wang, S., Zhai, Y. Y., Gao, Q., Luo, W. J., Xia, H., & Zhou, C. G. (2014). Highly efficient removal of Acid Red 18 from aqueous solution by magnetically retrievable chitosan/carbon nanotube: batch study, isotherms, kinetics, and thermodynamics. Journal of Chemical & Engineering Data, 59(1), 39–51.CrossRefGoogle Scholar
  47. 47.
    Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.CrossRefGoogle Scholar
  48. 48.
    Aguzzi, C., Cerezo, P., Viseras, C., & Caramella, C. (2007). Use of clays as drug delivery systems: possibilities and limitations. Applied Clay Science, 36(1-3), 22–36.CrossRefGoogle Scholar
  49. 49.
    Zhang, W., Gao, Y., Yang, N., Zhang, H., Zhang, F., Chen, H. Q., Meng, J. Q., Zhang, S. Y., & Li, W. (2018). Sinomenine-loaded microcapsules fabricated by phase reversion emulsification-drying in liquid method: an evaluation of process parameters, characterization, and released properties. Journal of Bioactive and Compatible Polymers, 33(4), 382–396.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and EngineeringTianjin Polytechnic UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart CenterLogistics University of PAPFTianjinChina

Personalised recommendations