Advertisement

Fabrication and Cytocompatibility Evaluation of Psyllium Husk (Isabgol)/Gelatin Composite Scaffolds

  • Suruchi Poddar
  • Piyush Sunil Agarwal
  • Ajay Kumar Sahi
  • Kiran Yellappa Vajanthri
  • Pallawi
  • K. N. Singh
  • Sanjeev Kumar MahtoEmail author
Article
  • 42 Downloads

Abstract

Psyllium husk or isabgol contains xylan backbone linked with arabinose, rhamnose, and galacturonic acid units (arabinoxylans). In this study, we demonstrate the fabrication and characterization of a macroporous three-dimensional (3D) composite scaffold by mixing psyllium husk powder (PH) and gelatin (G) in different ratios, viz.100 PH, 75/25 PH/G, and 50/50 PH/G (w/w), using an EDC-NHS coupling reaction followed by freeze-drying method. The reaction was performed in aqueous as well as in alcoholic media to determine the most appropriate solvent system for this purpose. The mechanical strength of the scaffold system was improved from 151 to 438 kPa. The fabricated scaffolds exhibited enhanced structural stability, remarkable swelling capacity, and escalated cell growth and proliferation. ATR-FTIR analysis showed the presence of amide and ester bonds indicating covalent crosslinking. SEM micrographs revealed the porous nature of the scaffolds with pores ranging from 30 to 150 μm, and further pore size distribution curve indicated that 75/25 PH/G (w/w%) EDC-NHS-alcohol scaffold exhibited the best fit to the Gaussian distribution. Swelling capacity of the 100 PH EDC-NHS-alcohol scaffolds was found to be nearly 40% from its original weight in 48 h. MTT assay using fibroblast cells revealed ~ 80% cellular proliferation by 6th day within the fabricated scaffolds in comparison to control.

Graphical Abstract

Keywords

Scaffold Psyllium husk Hydrogel EDC-NHS coupling reaction Biomaterial 

Notes

Acknowledgments

This work was financially supported by a DST-INSPIRE (DST/INSPIRE/04/2013/000836) research grant from the Department of Science and Technology, Government of India. The authors would also like to thank the Institute Research Project (IRP) scheme for individual faculty provided by the Indian Institute of Technology (Banaras Hindu University) for the development of state-of-the-art facilities.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Carletti, E., Motta, A., & Migliaresi, C. (2011). Scaffolds for tissue engineering and 3D cell culture. Methods in Molecular Biology (Clifton, N.J.), 695, 17–39.  https://doi.org/10.1007/978-1-60761-984-0_2.Google Scholar
  2. 2.
    Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529–2543.Google Scholar
  3. 3.
    O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95.  https://doi.org/10.1016/S1369-7021(11)70058-X.Google Scholar
  4. 4.
    Zhang, H., Zhou, L., & Zhang, W. (2014). Control of scaffold degradation in tissue engineering: a review. Tissue Engineering Part B: Reviews, 20(5), 492–502.  https://doi.org/10.1089/ten.teb.2013.0452.Google Scholar
  5. 5.
    Khalili, S., Khorasani, S. N., Razavi, S. M., Hashemibeni, B., & Tamayol, A. (2018). Nanofibrous scaffolds with biomimetic composition for skin regeneration. Applied Biochemistry and Biotechnology.  https://doi.org/10.1007/s12010-018-2871-7.
  6. 6.
    Ashraf, R., Sofi, H. S., Malik, A., Beigh, M. A., Hamid, R., & Sheikh, F. A. (2018). Recent trends in the fabrication of starch nanofibers: electrospinning and non-electrospinning routes and their applications in biotechnology. Applied Biochemistry and Biotechnology, 187(1), 47–74.  https://doi.org/10.1007/s12010-018-2797-0.Google Scholar
  7. 7.
    Masood, R., Hussain, T., Miraftab, M., Ullah, A., Ali Raza, Z., Areeb, T., & Umar, M. (2017). Novel alginate, chitosan, and psyllium composite fiber for wound-care applications. Journal of Industrial Textiles, 47(1), 20–37.  https://doi.org/10.1177/1528083716632805.Google Scholar
  8. 8.
    Varshney, N., Sahi, A. K., Vajanthri, K. Y., Poddar, S., Balavigneswaran, C. K., Prabhakar, A., Rao, V., & Mahto, S. K. (2019). Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS scaffolds: towards skin dressing material. Cytotechnology.  https://doi.org/10.1007/s10616-018-0285-6.
  9. 9.
    Mehta, D. M., Shelat, P. K., Parejiya, P. B., Patel, A. J., & Barot, B. (2011). Investigations of Plantago ovata husk powder as a disintegrating agent for development of famotidine tablets. International Journal of Pharmaceutical Sciences and Nanotechnology, 4(2), 1412–1417.Google Scholar
  10. 10.
    Pawar, H., & Varkhade, C. (2014). Isolation, characterization and investigation of Plantago ovata husk polysaccharide as superdisintegrant. International Journal of Biological Macromolecules, 69(Supplement C), 52–58.  https://doi.org/10.1016/j.ijbiomac.2014.05.019.Google Scholar
  11. 11.
    Fischer, M. H., Yu, N., Gray, G. R., Ralph, J., Anderson, L., & Marlett, J. A. (2004). The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydrate Research, 339(11), 2009–2017.  https://doi.org/10.1016/j.carres.2004.05.023.Google Scholar
  12. 12.
    Marlett, J. A., Kajs, T. M., & Fischer, M. H. (2000). An unfermented gel component of psyllium seed husk promotes laxation as a lubricant in humans. The American Journal of Clinical Nutrition, 72(3), 784–789.Google Scholar
  13. 13.
    Velnar, T., Bailey, T., & Smrkolj, V. (2009). The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research, 37(5), 1528–1542.  https://doi.org/10.1177/147323000903700531.Google Scholar
  14. 14.
    Nash, R. A. (1997). A relationship between screen opening and mesh size for standard sieves. Pharmaceutical Development and Technology, 2(2), 185–186.  https://doi.org/10.3109/10837459709022624.Google Scholar
  15. 15.
    Amin, M. R., & Rahman, M. R. (2014). Study and impact evaluation of particle size distribution on physicochemical properties of three different tablet formulations through sieve technology. International Journal for Pharmaceutical Research Scholars, 3(1), 448–463.Google Scholar
  16. 16.
    Hussain, M. A., Muhammad, G., Jantan, I., & Bukhari, S. N. A. (2016). Psyllium arabinoxylan: a versatile biomaterial for potential medicinal and pharmaceutical applications. Polymer Reviews, 56(1), 1–30.  https://doi.org/10.1080/15583724.2015.1078351.Google Scholar
  17. 17.
    Ponrasu, T., Vishal, P., Kannan, R., Suguna, L., & Muthuvijayan, V. (2016). Isabgol–silk fibroin 3D composite scaffolds as an effective dermal substitute for cutaneous wound healing in rats. RSC Advances, 6(77), 73617–73626.  https://doi.org/10.1039/C6RA13816K.Google Scholar
  18. 18.
    Bhatia, M., & Ahuja, M. (2015). Psyllium arabinoxylan: carboxymethylation, characterization and evaluation for nanoparticulate drug delivery. International Journal of Biological Macromolecules, 72, 495–501.  https://doi.org/10.1016/j.ijbiomac.2014.08.051.Google Scholar
  19. 19.
    Sharma, V. K., & Mazumder, B. (2014). Crosslinking of Isabgol husk polysaccharides for microspheres development and its impact on particle size, swelling kinetics and thermal behavior. Polymer Bulletin, 71(3), 735–757.  https://doi.org/10.1007/s00289-013-1089-7.Google Scholar
  20. 20.
    Bhatia, M., & Ahuja, M. (2013). Thiol modification of psyllium husk mucilage and evaluation of its mucoadhesive applications. The Scientific World Journal. Research Article, 2013, 1–7.  https://doi.org/10.1155/2013/284182.Google Scholar
  21. 21.
    An, J.-K., Wang, W.-B., & Wang, A.-Q. (2010). Preparation and swelling properties of a pH-sensitive superabsorbent hydrogel based on psyllium gum. Starch - Stärke, 62(10), 501–507.  https://doi.org/10.1002/star.200900244.Google Scholar
  22. 22.
    Elzoghby, A. O. (2013). Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. Journal of Controlled Release, 172(3), 1075–1091.  https://doi.org/10.1016/j.jconrel.2013.09.019.Google Scholar
  23. 23.
    Davidenko, N., Schuster, C. F., Bax, D. V., Farndale, R. W., Hamaia, S., Best, S. M., & Cameron, R. E. (2016). Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. Journal of Materials Science. Materials in Medicine, 27(10), 148.  https://doi.org/10.1007/s10856-016-5763-9.Google Scholar
  24. 24.
    Hoque, M. E., Nuge, T., Tshai, K. Y., Nordin, N., & Prasad, V. (2015). Gelatin based scaffolds for tissue engineering—a review. Polymer Research Journal, 9(1), 15–32.Google Scholar
  25. 25.
    Lu, B., Wang, T., Li, Z., Dai, F., Lv, L., Tang, F., et al. (2016). Healing of skin wounds with a chitosan–gelatin sponge loaded with tannins and platelet-rich plasma. International Journal of Biological Macromolecules, 82(Supplement C), 884–891.  https://doi.org/10.1016/j.ijbiomac.2015.11.009.Google Scholar
  26. 26.
    Pezeshki-Modaress, M., Mirzadeh, H., Zandi, M., Rajabi-Zeleti, S., Sodeifi, N., Aghdami, N., & Mofrad, M. R. K. (2017). Gelatin/chondroitin sulfate nanofibrous scaffolds for stimulation of wound healing: in-vitro and in-vivo study. Journal of Biomedical Materials Research Part A, 105(7), 2020–2034.  https://doi.org/10.1002/jbm.a.35890.Google Scholar
  27. 27.
    Pei, Y., Ye, D., Zhao, Q., Wang, X., Zhang, C., Huang, W., Zhang, N., Liu, S., & Zhang, L. (2015). Effectively promoting wound healing with cellulose/gelatin sponges constructed directly from a cellulose solution. Journal of Materials Chemistry B, 3(38), 7518–7528.  https://doi.org/10.1039/C5TB00477B.Google Scholar
  28. 28.
    Ninan, N., Muthiah, M., Bt. Yahaya, N. A., Park, I.-K., Elain, A., Wong, T. W., et al. (2014). Antibacterial and wound healing analysis of gelatin/zeolite scaffolds. Colloids and Surfaces B: Biointerfaces, 115(Supplement C), 244–252.  https://doi.org/10.1016/j.colsurfb.2013.11.048.Google Scholar
  29. 29.
    Nguyen, V. H., & Lee, B.-J. (2017). Synthetic optimization of gelatin-oleic conjugate and aqueous-based formation of self-assembled nanoparticles without cross-linkers. Macromolecular Research, 25(5), 466–473.  https://doi.org/10.1007/s13233-017-5056-2.Google Scholar
  30. 30.
    Jarquín-Yáñez, K., Arenas-Alatorre, J., Piñón-Zárate, G., Arellano-Olivares, R. M., Herrera-Enríquez, M., Hernández-Téllez, B., & Castell-Rodríguez, A. E. (2016). Structural effect of different EDC crosslinker concentration in gelatin-hyaluronic acid scaffolds. Journal of Bioengineering and Biomedical Science, 6(2), 1–6.  https://doi.org/10.4172/2155-9538.1000182.Google Scholar
  31. 31.
    Kupcsik, L. (2011). Estimation of cell number based on metabolic activity: the MTT reduction assay. In M. J. Stoddart (Ed.), Mammalian cell viability: methods and protocols (Vol. 740, pp. 13–19). Totowa: Humana Press.  https://doi.org/10.1007/978-1-61779-108-6_3.Google Scholar
  32. 32.
    Zhang, F., He, C., Cao, L., Feng, W., Wang, H., Mo, X., & Wang, J. (2011). Fabrication of gelatin–hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. International Journal of Biological Macromolecules, 48(3), 474–481.  https://doi.org/10.1016/j.ijbiomac.2011.01.012.Google Scholar
  33. 33.
    Buwalda, S. J., Dijkstra, P. J., Calucci, L., Forte, C., & Feijen, J. (2010). Influence of amide versus ester linkages on the properties of eight-armed PEG-PLA star block copolymer hydrogels. Biomacromolecules, 11(1), 224–232.  https://doi.org/10.1021/bm901080d.Google Scholar
  34. 34.
    Vijayadas, K. N., Nair, R. V., Gawade, R. L., Kotmale, A. S., Prabhakaran, P., Gonnade, R. G., Puranik, V. G., Rajamohanan, P. R., & Sanjayan, G. J. (2013). Ester vs. amide on folding: a case study with a 2-residue synthetic peptide. Organic & Biomolecular Chemistry, 11(48), 8348–8356.  https://doi.org/10.1039/C3OB41967C.Google Scholar
  35. 35.
    Das, N. C. (2014). Phase behaviour and separation kinetics of polymer blends. Journal of Microscopy, 253(3), 198–203.  https://doi.org/10.1111/jmi.12110.Google Scholar
  36. 36.
    Soliman, E. A., & Furuta, M. (2014). Influence of phase behavior and miscibility on mechanical, thermal and micro-structure of soluble starch-gelatin thermoplastic biodegradable blend films. Food and Nutrition Sciences, 05(11), 1040–1055.  https://doi.org/10.4236/fns.2014.511115.Google Scholar
  37. 37.
    Cowie, J. M. G., Elexpuru, E. M., & McEwen, I. J. (1991). Miscibility of solution-chlorinated polyethylene with poly(α-methylstyrene-co-acrylonitrile). Journal of Polymer Science Part B: Polymer Physics, 29(4), 407–412.  https://doi.org/10.1002/polb.1991.090290403.Google Scholar
  38. 38.
    Tolstoguzov, V. B. (1995). Some physico-chemical aspects of protein processing in foods. Multicomponent gels. Food Hydrocolloids, 9(4), 317–332.  https://doi.org/10.1016/S0268-005X(09)80262-2.Google Scholar
  39. 39.
    Semwal, R., Semwal, R. B., & Semwal, D. K. (2014). A gastroretentive drug delivery system of lisinopril imbibed on isabgol-husk. Current Drug Delivery, 11(3), 371–379.Google Scholar
  40. 40.
    Chavanpatil, M., Jain, P., Chaudhari, S., Shear, R., & Vavia, P. (2005). Development of sustained release gastroretentive drug delivery system for ofloxacin: in vitro and in vivo evaluation. International Journal of Pharmaceutics, 304(1–2), 178–184.  https://doi.org/10.1016/j.ijpharm.2005.08.009.Google Scholar
  41. 41.
    Sabel, B. A., Dominiak, P., Hüaser, W., During, M. J., & Freese, A. (1990). Extended levodopa release from a subcutaneously implanted polymer matrix in rats. Annals of Neurology, 28(5), 714–717.  https://doi.org/10.1002/ana.410280519.Google Scholar
  42. 42.
    Beneke, C. E., Viljoen, A. M., & Hamman, J. H. (2009). Polymeric plant-derived excipients in drug delivery. Molecules, 14(7), 2602–2620.  https://doi.org/10.3390/molecules14072602.Google Scholar
  43. 43.
    Ponrasu, T., Krishna Veerasubramanian, P., Kannan, R., Gopika, S., Suguna, L., & Muthuvijayan, V. (2018). Morin incorporated polysaccharide–protein (psyllium–keratin) hydrogel scaffolds accelerate diabetic wound healing in Wistar rats. RSC Advances, 8(5), 2305–2314.  https://doi.org/10.1039/C7RA10334D.Google Scholar
  44. 44.
    Lee, J. M., Edwards, H. H. L., Pereira, C. A., & Samii, S. I. (1996). Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). Journal of Materials Science: Materials in Medicine, 7(9), 531–541.  https://doi.org/10.1007/BF00122176.Google Scholar
  45. 45.
    Bax, D. V., Davidenko, N., Gullberg, D., Hamaia, S. W., Farndale, R. W., Best, S. M., & Cameron, R. E. (2017). Fundamental insight into the effect of carbodiimide crosslinking on cellular recognition of collagen-based scaffolds. Acta Biomaterialia, 49, 218–234.  https://doi.org/10.1016/j.actbio.2016.11.059.Google Scholar
  46. 46.
    Cammarata, C. R., Hughes, M. E., & Ofner, C. M. (2015). Carbodiimide induced cross-linking, ligand addition, and degradation in gelatin. Molecular Pharmaceutics, 12(3), 783–793.  https://doi.org/10.1021/mp5006118.Google Scholar
  47. 47.
    Everaerts, F., Torrianni, M., Hendriks, M., & Feijen, J. (2008). Biomechanical properties of carbodiimide crosslinked collagen: influence of the formation of ester crosslinks. Journal of Biomedical Materials Research. Part A, 85(2), 547–555.  https://doi.org/10.1002/jbm.a.31524.Google Scholar
  48. 48.
    Luo, B., & Choong, C. (2015). Porous ovalbumin scaffolds with tunable properties: a resource-efficient biodegradable material for tissue engineering applications. Journal of Biomaterials Applications, 29(6), 903–911.  https://doi.org/10.1177/0885328214548881.Google Scholar
  49. 49.
    Loh, Q. L., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering. Part B, Reviews, 19(6), 485–502.  https://doi.org/10.1089/ten.teb.2012.0437.Google Scholar
  50. 50.
    Hoque, M. E., San, W. Y., Wei, F., Li, S., Huang, M.-H., Vert, M., & Hutmacher, D. W. (2009). Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Tissue Engineering. Part A, 15(10), 3013–3024.  https://doi.org/10.1089/ten.TEA.2008.0355.Google Scholar
  51. 51.
    Barnes, J. M., Przybyla, L., & Weaver, V. M. (2017). Tissue mechanics regulate brain development, homeostasis and disease. Journal of Cell Science, 130(1), 71–82.  https://doi.org/10.1242/jcs.191742.Google Scholar
  52. 52.
    Sartori, S., Chiono, V., Tonda-Turo, C., Mattu, C., & Gianluca, C. (2014). Biomimetic polyurethanes in nano and regenerative medicine. Journal of Materials Chemistry B, 2(32), 5128–5144.  https://doi.org/10.1039/C4TB00525B.Google Scholar
  53. 53.
    Phan, S. H. (2008). Biology of fibroblasts and myofibroblasts. Proceedings of the American Thoracic Society, 5(3), 334–337.  https://doi.org/10.1513/pats.200708-146DR.Google Scholar
  54. 54.
    Costa-Almeida, R., Soares, R., & Granja, P. L. (2018). Fibroblasts as maestros orchestrating tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 12(1), 240–251.  https://doi.org/10.1002/term.2405.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  2. 2.Department of Rachana Sharir, Faculty of Ayurveda, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
  3. 3.Centre for Advanced Biomaterials and Tissue EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations