Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 Proteins in Spodoptera frugiperda Control

  • Camila Soares FigueiredoEmail author
  • Ana Rita Nunes Lemes
  • Isis Sebastião
  • Janete Apparecida Desidério


The polyphagous caterpillar, Spodoptera frugiperda, has been controlled with either chemical insecticides or transgenic plants such as Bt maize that expresses the cry and/or vip genes of the Bacillus thuringiensis (Bt) bacterium. Despite the efficiency of Bt toxins in lepidopteran control, populations resistant to Bt plants have emerged in different locations around the world. Thus, understanding how combined proteins interact against pests can assist resistance control and management. This work demonstrated the toxicity of Cry1Ab, Cry1Ac, Cry1Ca, Cry1Ea, Cry2Aa, Cry2Ab, Vip3Aa, and Vip3Ca in single and combined assays against S. frugiperda neonatal larvae. All protein mixtures had synergistic action in the control of the larvae. The Vip3Aa + Cry1Ab mixture had the highest toxicity, sequentially followed by Vip3Aa + Cry2Ab, Cry1Ab + Cry2Ab + Vip3Aa, Cry1Ea + Cry1Ca, Cry1Ab + Cry2Ab, Vip3Ca + Cry1Ea, and Vip3Ca + Cry1Ca. Cry1Ab, Cry1Ac, Cry2Ab, and Vip3Aa bound to more than one site on the brush border membrane vesicles (BBMV) of S. frugiperda. The Cry1Ab and Cry1Ac proteins share binding site, while Cry1Ab does not share binding site with the Cry2Aa and Cry2Ab proteins. The Vip3Aa protein does not share receptors with the tested Cry1 and Cry2. The results suggest that combination these tested proteins may increase toxicity against S. frugiperda neonates.


Fall armyworm Vip3 proteins Cry proteins Competition assays 



Thanks are due to Dr. Ruud A. de Maagd (Plant Research International—Wageningen, Netherlands) for providing the clones carrying the cry1 genes and to Dr. Juan Ferré, University of Valencia, Campus de Burjassot, Spain, for providing the clone carrying the vip3Ca gene.

Funding Information

This work was financially supported by the São Paulo State Foundation for the Research Support (FAPESP) (grant support process no. 2013/15128-2) and the CAPES–Brazilian Federal Agency for Support and Evaluation of Graduate Education.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Storer, N. P., Babcock, J. M., Schlenz, M., Meade, T., Thompson, G. D., Bing, J. W., & Huckaba, R. M. (2010). Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. Journal of Economic Entomology, 103(4), 1031–1038.CrossRefGoogle Scholar
  2. 2.
    Storer, N. P., Kubiszak, M. E., King, J. E., Thompson, G. D., & Santos, A. C. (2012). Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. Journal of Invertebrate Pathology, 110(3), 294–300.CrossRefGoogle Scholar
  3. 3.
    Farias, J. R., Andow, D. A., Horikoshi, R. J., Sorgatto, R. J., Fresia, P., dos Santos, A. C., & Omoto, C. (2014). Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Protection, 64, 150–158.CrossRefGoogle Scholar
  4. 4.
    Omoto, C., Bernardi, O., Salmeron, E., Sorgatto, R. J., Dourado, P. M., Crivellari, A., Carvalho, R. B., Willse, A., Martinelli, S., & Head, G. P. (2016). Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Management Science, 72(9), 1727–1736.CrossRefGoogle Scholar
  5. 5.
    Monnerat, R., Martins, E., Macedo, C., Queiroz, P., Praça, L., Soares, C. M., Moreira, H., Grisi, I., Silva, J., Soberon, M., & Bravo, A. (2015). Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. PLoS One, 10, 1–12.CrossRefGoogle Scholar
  6. 6.
    Bernardi, O., Bernardi, D., Horikoshi, R. J., Okuma, D. M., Miraldo, L. L., Fatoretto, J., Medeiros, F. C., Burd, T., & Omoto, C. (2016). Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda. Pest Management Science, 72(9), 1794–1802.CrossRefGoogle Scholar
  7. 7.
    Horikoshi, R. J., Bernardi, D., Bernardi, O., Malaquias, J. B., Okuma, D. M., Miraldo, L. L., Amaral, F. A., & Omoto, C. (2016). Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management. Scientific Reports, 6(1).
  8. 8.
    Lee, M. K., Walters, F. S., Hart, H., Palekar, N., & Chen, J. S. (2003). The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin. Applied and Environmental Microbiology, 69(8), 4648–4657.CrossRefGoogle Scholar
  9. 9.
    de Maagd, R. A., Bravo, A., Berry, C., Crickmore, N., & Schnepf, H. E. (2003). Structure, diversity and evolution of protein toxins from sporeforming entomopathogenic bacteria. Annual Review of Genetics, 37(1), 409–433.CrossRefGoogle Scholar
  10. 10.
    Pardo-López, L., Soberón, M., & Bravo, A. (2013). Bacillus thuringiensis insecticidal 3-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, 37(1), 3–22.CrossRefGoogle Scholar
  11. 11.
    Sena, J. A., Hernández-Rodríguez, C. S., & Ferré, J. (2009). Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Applied and Environmental Microbiology, 75(7), 2236–2237.CrossRefGoogle Scholar
  12. 12.
    Tabashnik, B. E. (2015). ABCs of insect resistance to Bt. PLoS Genetics, 11(11), e1005646.CrossRefGoogle Scholar
  13. 13.
    Ocelotl, J., Sánchez, J., Arroyo, R., García-Gómez, B. I., Gómez, I., Unnithan, G. C., Tabashnik, B. E., Bravo, A., & Soberón, M. (2015). Binding and oligomerization of modified and native Bt toxins in resistant and susceptible pink bollworm. PLoS One, 10(12), e0144086.CrossRefGoogle Scholar
  14. 14.
    Abdelkefi-Mesrati, L., Boukedi, H., Dammak-Karray, M., Sellami-Boudawara, T., Jaoua, S., & Tounsi, S. (2011). Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. Journal of Invertebrate Pathology, 106(2), 250–254.CrossRefGoogle Scholar
  15. 15.
    Chakroun, M., & Ferré, J. (2014). In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites by 125I radiolabeling. Applied and Environmental Microbiology, 80(20), 6258–6265.CrossRefGoogle Scholar
  16. 16.
    Sellami, S., Cherif, M., Abdelkefi-Mesrati, L., Tounsi, S., & Jamoussi, K. (2015). Toxicity, activation process, and histopathological effect of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 on Tuta absoluta. Applied Biochemistry and Biotechnology, 175(4), 1992–1999.CrossRefGoogle Scholar
  17. 17.
    Jiang, K., Mei, S. Q., Wang, T. T., Pan, J. H., Chen, Y. H., & Cai, J. (2016). Vip3Aa induces apoptosis in cultured Spodoptera frugiperda (Sf9) cells. Toxicon, 120, 49–56.CrossRefGoogle Scholar
  18. 18.
    Ferré, J., & Van Rie, J. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 47(1), 501–533.CrossRefGoogle Scholar
  19. 19.
    Heckel, D. G. (2015). Roles of ABC proteins in the mechanism and management of Bt resistance. In M. Soberón, Y. Gao, & A. Bravo (Eds.), Bt resistance—characterization and strategies for GM crops producing Bacillus thuringiensis toxins (pp. 138–149). Boston: CABI Biotechnology.Google Scholar
  20. 20.
    Carriere, Y., Fabrick, J. A., & Tabashnik, B. E. (2016). Can pyramids and seed mixtures delay resistance to Bt crops? Trends in Biotechnology, 34(4), 291–302.CrossRefGoogle Scholar
  21. 21.
    Lemes, A. R. N., Davolos, C. C., Legori, P. C. B. C., Fernandes, O. A., Ferre, J., Lemos, M. V. F., & Desiderio, J. A. (2014). Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. PloS One, 9(10), e107196.CrossRefGoogle Scholar
  22. 22.
    Ricietto, A. P. S., Gomis-Cebolla, J., Vilas-Bôas, G. T., & Ferré, J. (2016). Susceptibility of Grapholita molesta (Busck, 1916) to formulations of Bacillus thuringiensis, individual toxins and their mixtures. Journal of Invertebrate Pathology, 141, 1–5.CrossRefGoogle Scholar
  23. 23.
    Bergamasco, V. B., Mendes, D. R. P., Fernandes, O. A., Desidério, J. A., & Lemos, M. V. F. (2013). Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp.(Lepidoptera). Journal of Invertebrate Pathology, 112(2), 152–158.CrossRefGoogle Scholar
  24. 24.
    Herrero, S., González-Cabrera, J., Ferre, J., Bakker, P. L., & De Maagd, R. A. (2004). Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. The Biochemical Journal, 384(3), 507–513.CrossRefGoogle Scholar
  25. 25.
    Figueiredo, C. S., Marucci, S. C., Tezza, R. I. D., Lemos, M. V. F., & Desidério, J. A. (2013). Caracterização do gene vip3A e toxicidade da proteína Vip3Aa50 á lagarta-do-cartucho e á lagarta-da-soja. Pesquisa Agropecuária Brasileira, 48(9), 1220–1227.CrossRefGoogle Scholar
  26. 26.
    Palma, L., Hernández-Rodríguez, C. S., Maeztu, M., Hernández-Martínez, P., Escudero, I. R., Escriche, B., Muñoz, D., Van Rie, J., Ferré, J., & Caballero, P. (2012). Vip3C, a novel class of vegetative insecticidal proteins from Bacillus thuringiensis. Applied and Environmental Microbiology, 78(19), 7163–7165.CrossRefGoogle Scholar
  27. 27.
    Monnerat, R. Q., Batista, A. C., Medeiros, P. T., Martins, E. S., Melatti, V. M., Praça, L. B., Dumas, V. F., Morinaga, C., Demo, C., Gomes, A. C. M., Falcão, R., Siqueira, C. B., Silva-Werneck, J. O., & Berry, C. (2007). Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biological Control, 41(3), 291–295.CrossRefGoogle Scholar
  28. 28.
    Tabashnik, B. E. (1992). Evaluation of synergism among Bacillus thuringiensis toxins. Applied and Environmental Microbiology, 58, 3343–3346.Google Scholar
  29. 29.
    Finney, D. J. (1971). Probit analysis. London: Cambridge University Press.Google Scholar
  30. 30.
    Wolfersberger, M. G., Luethy, P., Maurer, A., Parenti, P., Sacchi, V. F., Giordana, B., & Hanozet, G. M. (1987). Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pierisbrassicae). Comparative Biochemistry and Physiology, 86(2), 301–308.CrossRefGoogle Scholar
  31. 31.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.CrossRefGoogle Scholar
  32. 32.
    Chakroun, M., & Ferré, J. (2014). In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites using 125I-radiolabeling. Applied and Environmental Microbiology, 80(20), 6258–6265.CrossRefGoogle Scholar
  33. 33.
    Bernardi, O., Amado, D., Sousa, R. S., Segatti, F., Fatoretto, J., Burd, A. D., & Omoto, C. (2014). Baseline susceptibility and monitoring of Brazilian populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 insecticidal protein. Journal of Economic Entomology, 107(2), 781–790.CrossRefGoogle Scholar
  34. 34.
    Lemes, N. A., Figueiredo, C. S., Sebastião, I., Silva, L. M., Alves, R. C., Siqueira, H. A. A., Lemos, M. V. F., Fernandes, O. A., & Desidério, J. A. (2017). Cry1Ac and Vip3Aa proteins from Bacillus thuringiensis targeting Cry toxin resistance in Diatraea flavipennella and Elasmopalpus lignosellus from sugarcane. PeerJ, 5, e2866.CrossRefGoogle Scholar
  35. 35.
    Yang, J., Quan, Y., Sivaprasath, P., Shabbir, M. Z., Wang, Z., Ferré, J., & He, K. (2018). Insecticidal activity and synergistic combinations of ten different Bt toxins against Mythimna separata (Walker). Toxins (Basel)., 10(11).Google Scholar
  36. 36.
    Lee, M. K., Curtiss, A., Alcantara, E., & Dean, D. H. (1996). Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar. Applied and Environmental Microbiology, 62, 583–586.Google Scholar
  37. 37.
    Muñóz-Garay, C., Portugal, L., Pardo-López, L., Jiménez-Juárez, N., Arenas, I., Gómez, I., Sánchez-López, R., Arroyo, R., Holzenburg, A., Savva, C. G., Soberón, M., & Bravo, A. (2009). Characterization of the mechanism of action of the genetically modifi ed Cry1AbMod toxin that is active against Cry1Ab-resistant insects. Biochimica et Biophysica Acta, 1788(10), 2229–2237.CrossRefGoogle Scholar
  38. 38.
    Carmona, D., Rodríguez-Almazán, C., Muñoz-Garay, C., Portugal, L., Pérez, C., De Maagd, R. A., et al. (2011). Dominant negative phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba mutants suggest hetero-oligomer formation among different cry toxins. PLoS One, 6(5), e19952.CrossRefGoogle Scholar
  39. 39.
    Kunthic, T., Surya, W., & Promdonkoy, B. (2017). Conditions for homogeneous preparation of stable monomeric and oligomeric forms of activated Vip3A toxin from Bacillus thuringiensis. European Biophysics Journal, 46(3), 257–264.CrossRefGoogle Scholar
  40. 40.
    Herrero, S., Bel, Y., Hernández-Martínez, P., & Ferré, J. (2016). Susceptibility, mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp. Current Opinion in Insect Science, 15, 89–96.CrossRefGoogle Scholar
  41. 41.
    Osman, G. H., Altaf, W. J., Saleh, I. A. S., Soltane, R., Abulreesh, H. H., Arif, I. A., Ramadan, A. M., & Osman, Y. A. (2018). First report of detection of the putative receptor of Bacillus thuringiensis toxin Vip3Aa from black cutworm (Agrotis ipsilon). Saudi Journal of Biological Sciences, 25(3), 441–445.CrossRefGoogle Scholar
  42. 42.
    Qiu, L., Zhang, B., Liu, L., Ma, W., Wang, X., Lei, C., & Chen, L. (2017). Proteomic analysis of Cry2Aa-binding proteins and their receptor function in Spodoptera exigua. Scientific Reports, 7(1), 40222.CrossRefGoogle Scholar
  43. 43.
    Jurat-Fuentes, J. L., & Adang, M. J. G. (2001). Importance of Cry1 d-endotoxin domain II loops for binding specificity in Heliothis virescens (L.). Applied and Environmental Microbiology, 67(1), 323–329.CrossRefGoogle Scholar
  44. 44.
    Rajagopal, R., Agrawal, N., Selvapandiyan, A., Sivakumar, S., Ahmad, S., & Bhatnagar, R. K. (2003). Recombinantly expressed isoenzymic aminopeptidases from Helicoverpa armigera (American cotton bollworm) midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins. The Biochemical Journal, 370(3), 971–978.CrossRefGoogle Scholar
  45. 45.
    Hua, G., Jurat-Fuentes, J. L., & Adang, M. J. (2004). Fluorescent-based assays establish Manduca sexta Bt-R1a cadherin as a receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells. Insect Biochemistry and Molecular Biology, 34(3), 193–202.CrossRefGoogle Scholar
  46. 46.
    Jurat-Fuentes, J. L., & Adang, M. J. (2006). The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins. Biochemistry, 45(32), 9688–9695.CrossRefGoogle Scholar
  47. 47.
    Pacheco, S., Gómez, I., Gill, S. S., Bravo, A., & Soberón, M. (2009). Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation. Peptides, 30(3), 583–588.CrossRefGoogle Scholar
  48. 48.
    Baxter, S. W., Badenes-Peréz, F. R., Morrison, A., Vogel, H., Crickmore, N., Kain, W., Wang, P., Heckel, D. G., & Jiggins, C. D. (2011). Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics, 189(2), 675–679.CrossRefGoogle Scholar
  49. 49.
    Da Silva, I. H. S., Goméz, I., Sánchez, J., Martínez de Castro, D. L., Valicente, F. H., Soberón, M., et al. (2018). Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin. PLoS One, 13(12), e0207789.CrossRefGoogle Scholar
  50. 50.
    Qiu, L., Hou, L., Zhang, B., Liu, L., Li, B., Deng, P., Ma, W., Wang, X., Fabrick, J. A., & Chen, L. (2015). Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Journal of Invertebrate Pathology, 127, 47–53.CrossRefGoogle Scholar
  51. 51.
    Hernández-Rodríguez, C. S., Hernández-Martínez, P., van Rie, J., Escriche, B., & Ferré, J. (2013). Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS One, 8(7), e68164.CrossRefGoogle Scholar
  52. 52.
    Lee, M. K., Miles, P., & Chen, J. (2006). Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochemical and Biophysical Research Communications, 339(4), 1043–1047.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e VeterináriasUNESP Univ Estadual PaulistaJaboticabalBrazil

Personalised recommendations