Advertisement

Viability of Using Glycerin as a Co-substrate in Anaerobic Digestion of Sugarcane Stillage (Vinasse): Effect of Diversified Operational Strategies

  • Giovanna Lovato
  • Lia P. P. Batista
  • Marina B. Preite
  • Jessica N. Yamashiro
  • Ana L. S. Becker
  • Maria F. G. Vidal
  • Nathalia Pezini
  • Roberta Albanez
  • Suzana M. Ratusznei
  • José A. D. RodriguesEmail author
Article
  • 16 Downloads

Abstract

Vinasse, from sugar and ethanol production, stands out as one of the most problematic agroindustry wastes due to its high chemical oxygen demand, large production volume, and recalcitrant compounds. Therefore, the viability of using glycerin as a co-substrate in vinasse anaerobic digestion was tested, to increase process efficiency and biogas productivity. The effect of feeding strategy, influent concentration, cycle length, and temperature were assessed to optimize methane production. Glycerin (1.53% v/v) proved to be a good co-substrate since it increased the overall methane production in co-digestion assays. CH4 productivity enhanced exponentially as influent concentration increased, but when temperature was increased to 35 °C, biogas production was impaired. The highest methane productivity and yield were achieved using fed-batch mode, at 30 °C and at an organic loading rate of 10.1 kg COD m−3 day−1: 139.32 mol CH4 m−3 day−1, 13.86 mol CH4 kg CODapplied, and 15.30 mol CH4 kg CODremoved. Methane was predominantly produced through the hydrogenotrophic route. In order to treat all the vinasse produced by a mid-size sugar and ethanol plant, nine reactors with 7263.4 m3 each would be needed. The energy generated by burning the biogas in boilers would reach approximately 92,000 MW h per season and could save up to US$ 240,000.00 per month in diesel oil demand.

Keywords

Biomethane Energy Glycerin Kinetic model SBR Scale-up Stillage Vinasse 

Notes

Funding Information

This study was supported by the São Paulo Research Foundation (FAPESP #14/07692-8; #15/06.246-7; #17/09.722-0), the National Council for Scientific and Technological Development (CNPq #443181/2016-0; #800060/2018-0), and the Coordination for the Improvement of Higher Education Personnel (CAPES).

References

  1. 1.
    Kopsahelis, A., Stavropoulos, K., Zafiri, C., & Kornaros, M. (2018). Anaerobic co-digestion of end-of-life dairy products with agroindustrial wastes in a mesophilic pilot-scale two-stage system: assessment of system’s performance. Energy Conversion and Management, 165, 851–860.  https://doi.org/10.1016/J.ENCONMAN.2018.04.017.CrossRefGoogle Scholar
  2. 2.
    Pant, D., & Adholeya, A. (2007). Biological approaches for treatment of distillery wastewater: a review. Bioresource Technology., 98(12), 2321–2334.  https://doi.org/10.1016/j.biortech.2006.09.027.CrossRefGoogle Scholar
  3. 3.
    Mohana, S., Acharya, B. K., & Madamwar, D. (2009). Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials., 163(1), 12–25.  https://doi.org/10.1016/j.jhazmat.2008.06.079.CrossRefGoogle Scholar
  4. 4.
    Fuess, L. T., & Garcia, M. L. (2015). Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. Journal of Environmental Management, 162, 102–114.  https://doi.org/10.1016/j.jenvman.2015.07.046.CrossRefGoogle Scholar
  5. 5.
    Siles, J. A., García-García, I., Martín, A., & Martín, M. A. (2011). Integrated ozonation and biomethanization treatments of vinasse derived from ethanol manufacturing. Journal of Hazardous Materials, 188(1–3), 247–253.  https://doi.org/10.1016/j.jhazmat.2011.01.096.CrossRefGoogle Scholar
  6. 6.
    Rivero, M., Solera, R., & Perez, M. (2014). Anaerobic mesophilic co-digestion of sewage sludge with glycerol: enhanced biohydrogen production. International Journal of Hydrogen Energy, 39(6), 2481–2488.  https://doi.org/10.1016/j.ijhydene.2013.12.006.CrossRefGoogle Scholar
  7. 7.
    Viana, M. B., Freitas, A. V., Leitão, R. C., Pinto, G. A. S., & Santaella, S. T. (2012). Anaerobic digestion of crude glycerol: a review. Environmental Technology Reviews, 1(1), 81–92.  https://doi.org/10.1080/09593330.2012.692723.CrossRefGoogle Scholar
  8. 8.
    Janke, L., Leite, A. F., Batista, K., Silva, W., Nikolausz, M., Nelles, M., & Stinner, W. (2016). Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresource Technology., 217, 10–20.  https://doi.org/10.1016/j.biortech.2016.01.110.CrossRefGoogle Scholar
  9. 9.
    Santa Cruz, L. F. L. (2011). Technical/economical/environmental feasibility of current forms of reclamation of vinasse to the sugarcane industry of Sao Paulo. University of São Paulo.Google Scholar
  10. 10.
    Lovato, G., Albanez, R., Triveloni, M., Ratusznei, S. M., & Rodrigues, J. A. D. (2018). Methane production by co-digesting vinasse and whey in an AnSBBR: effect of mixture ratio and feed strategy. Applied Biochemistry and Biotechnology, 187(1), 28–19.  https://doi.org/10.1007/s12010-018-2802-7.CrossRefGoogle Scholar
  11. 11.
    Lovato, G., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2016). Co-digestion of whey with glycerin in an AnSBBR for biomethane production. Applied Biochemistry and Biotechnology, 178(1), 126–143.  https://doi.org/10.1007/s12010-015-1863-0.CrossRefGoogle Scholar
  12. 12.
    APHA/AWWA/WEF. (2012). Standard methods for the examination of water and wastewater. Standard methods, 541. doi:ISBN 9780875532356.Google Scholar
  13. 13.
    Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. Water, 58(370), 406–411.  https://doi.org/10.1016/S0262-1762(99)80122-9.Google Scholar
  14. 14.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.  https://doi.org/10.1021/ac60111a017.CrossRefGoogle Scholar
  15. 15.
    Bondioli, P., & Della Bella, L. (2005). An alternative spectrophotometric method for the determination of free glycerol in biodiesel. European Journal of Lipid Science and Technology, 107(3), 153–157.  https://doi.org/10.1002/ejlt.200401054.CrossRefGoogle Scholar
  16. 16.
    Rodrigues, J. A. D., Pinto, A. G., Ratusznei, S. M., Zaiat, M., & Gedraite, R. (2004). Enhancement of the performance of an anaerobic sequencing batch reactor treating low-strength wastewater through implementation of a variable stirring rate program. Brazilian Journal of Chemical Engineering, 21(3), 423–434.  https://doi.org/10.1590/S0104-66322004000300007.CrossRefGoogle Scholar
  17. 17.
    Bagley, D. M., & Brodkorb, T. S. (1999). Modeling microbial kinetics in an anaerobic sequencing batch reactor: model development and experimental validation. Water Environment Research, 71(7), 1320–1332.CrossRefGoogle Scholar
  18. 18.
    Albanez, R., Chiaranda, B. C., Ferreira, R. G., França, A. L. P., Honório, C. D., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2016). Anaerobic biological treatment of vinasse for environmental compliance and methane production. Applied Biochemistry and Biotechnology, 178(1), 21–43.  https://doi.org/10.1007/s12010-015-1856-z.CrossRefGoogle Scholar
  19. 19.
    Albanez, R., Lovato, G., Zaiat, M., Ratusznei, S. M., & Rodrigues, J. A. D. (2016). Optimization, metabolic pathways modeling and scale-up estimative of an AnSBBR applied to biohydrogen production by co-digestion of vinasse and molasses. International Journal of Hydrogen Energy, 41(45), 20473–20484.  https://doi.org/10.1016/j.ijhydene.2016.08.145.CrossRefGoogle Scholar
  20. 20.
    Harada, H., Uemura, S., Chen, A.-C., & Jayadevan, J. (1996). Anaerobic treatment of a recalcitrant distillery wastewater by a thermophilic UASB reactor. Bioresource Technology, 55(3), 215–221.  https://doi.org/10.1016/0960-8524(96)00003-X.CrossRefGoogle Scholar
  21. 21.
    Wijekoon, K. C., Visvanathan, C., & Abeynayaka, A. (2011). Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 102(9), 5353–5360.  https://doi.org/10.1016/j.biortech.2010.12.081.CrossRefGoogle Scholar
  22. 22.
    Chernicharo, C. A. de L. (2007). Biological wastewater treatment vol.5: anaerobic reactors. Biological wastewater treatment in warm climate regions. Belo Horizonte, Minas Gerais, Brazil: Federal University of Minas Gerais.  https://doi.org/10.1017/CBO9781107415324.004
  23. 23.
    Ahring, B. K., Sandberg, M., & Angelidaki, I. (1995). Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Applied Microbiology and Biotechnology, 43(3), 559–565.  https://doi.org/10.1007/BF00218466.CrossRefGoogle Scholar
  24. 24.
    Boe, K., Batstone, D. J., Steyer, J. P., & Angelidaki, I. (2010). State indicators for monitoring the anaerobic digestion process. Water Research, 44(20), 5973–5980.  https://doi.org/10.1016/j.watres.2010.07.043.CrossRefGoogle Scholar
  25. 25.
    Heidrich, E. S., Curtis, T. P., & Dolfing, J. (2011). Determination of the internal chemical energy of wastewater. Environmental Science and Technology, 45(2), 827–832.  https://doi.org/10.1021/es103058w.CrossRefGoogle Scholar
  26. 26.
    Souza, M. E., Fuzaro, G., & Polegato, A. R. (1992). Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Water Science and Technology., 25(7), 213–222.  https://doi.org/10.2166/wst.1992.0153.CrossRefGoogle Scholar
  27. 27.
    Ferraz Júnior, A. D. N., Koyama, M. H., de Araújo Júnior, M. M., & Zaiat, M. (2016). Thermophilic anaerobic digestion of raw sugarcane vinasse. Renewable Energy, 89, 245–252.  https://doi.org/10.1016/j.renene.2015.11.064.CrossRefGoogle Scholar
  28. 28.
    Rodrigues, J. A. D., Oliveira, R. P., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2011). AnSBBR applied to a personal care industry wastewater treatment: effects of fill time, volume treated per cycle, and organic load. Applied Biochemistry and Biotechnology, 163(1), 127–142.  https://doi.org/10.1007/s12010-010-9022-0.CrossRefGoogle Scholar
  29. 29.
    Liu, H., & Fang, H. H. P. (2002). Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology, 95(3), 249–256.  https://doi.org/10.1016/S0168-1656(02)00025-1.CrossRefGoogle Scholar
  30. 30.
    Nguyen, M. T., Mohd Yasin, N. H., Miyazaki, T., & Maeda, T. (2014). Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge. Chemosphere, 117, 552–558.  https://doi.org/10.1016/J.CHEMOSPHERE.2014.08.055.CrossRefGoogle Scholar
  31. 31.
    Volpini, V., Lovato, G., Albanez, R., Ratusznei, S. M., & Rodrigues, J. A. D. (2018). Biomethane generation in an AnSBBR treating effluent from the biohydrogen production from vinasse: optimization, metabolic pathways modeling and scale-up estimation. Renewable Energy, 116(Pt A), 288–198.  https://doi.org/10.1016/j.renene.2017.09.004.CrossRefGoogle Scholar
  32. 32.
    Lullio, T. G., Souza, L. P., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2014). Biomethane production in an AnSBBR treating wastewater from biohydrogen process. Applied Biochemistry and Biotechnology, 174(5), 1873–1896.  https://doi.org/10.1007/s12010-014-1170-1.CrossRefGoogle Scholar
  33. 33.
    Almeida, W. A., Ratusznei, S. M., Zaiat, M., & Rodrigues, J. A. D. (2017). AnSBBR applied to biomethane production for vinasse treatment: effects of organic loading, feed strategy and temperature. Brazilian Journal of Chemical Engineering, 34(3), 759–773.  https://doi.org/10.1590/0104-6632.20170343s20150584.CrossRefGoogle Scholar
  34. 34.
    Moraes, B. S., Zaiat, M., & Bonomi, A. (2015). Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renewable and Sustainable Energy Reviews, 44, 888–903.  https://doi.org/10.1016/j.rser.2015.01.023.CrossRefGoogle Scholar
  35. 35.
    USA Government. (2018). U.S. Energy Information Administration. Retrieved April 5, 2018, from https://www.eia.gov/

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Giovanna Lovato
    • 1
  • Lia P. P. Batista
    • 1
  • Marina B. Preite
    • 1
  • Jessica N. Yamashiro
    • 1
  • Ana L. S. Becker
    • 1
  • Maria F. G. Vidal
    • 1
  • Nathalia Pezini
    • 1
  • Roberta Albanez
    • 1
  • Suzana M. Ratusznei
    • 1
  • José A. D. Rodrigues
    • 1
    Email author
  1. 1.Mauá School of EngineeringMauá Institute of Technology (EEM/IMT)São Caetano do SulBrazil

Personalised recommendations