Applied Biochemistry and Biotechnology

, Volume 188, Issue 2, pp 357–368 | Cite as

GPTMS-Modified Bredigite/PHBV Nanofibrous Bone Scaffolds with Enhanced Mechanical and Biological Properties

  • Monireh KouhiEmail author
  • Venugopal Jayarama Reddy
  • Seeram Ramakrishna


Bioceramic nanoparticles with high specific surface area often tend to agglomerate in the polymer matrix, which results in undesirable mechanical properties of the composites and poor cell spreading and attachment. In the present work, bredigite (BR) nanoparticles were modified with an organosilane coupling agent, 3-glycidoxypropyltrimethoxysilane (GPTMS), to enhance its dispersibility in the polymer matrix. The polyhydroxybutyrate-co-hydroxyvaletare (PHBV) nanofibrous scaffolds containing either bredigite or GPTMS-modified bredigite (G-BR) nanoparticles were fabricated using electrospinning technique and characterized using scanning electron microscopy, transmission electron microscopy, and tensile strength. Results demonstrated that modification of bredigite was effective in enhancing nanoparticle dispersion in the PHBV matrix. PHBV/G-BR scaffold showed improved mechanical properties compared to PHBV and PHBV/BR, especially at the higher concentration of nanoparticles. In vitro bioactivity assay performed in the simulated body fluid (SBF) indicated that composite PHBV scaffolds were able to induce the formation of apatite deposits after incubation in SBF. From the results of in vitro biological assay, it is concluded that the synergetic effect of BR and GPTMS provided an enhanced hFob cells attachment and proliferation. The developed PHBV/G-BR nanofibrous scaffolds may be considered for application in bone tissue engineering.


Bredigite nanoparticles PHBV GPTMS Electrospinning Bone tissue engineering 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Talebian, S., Mehrali, M., Mohan, S., Balajiraghavendran, H., Mehrali, M., Khanlou, H. M., et al. (2014). Chitosan (PEO)/bioactive glass hybrid nanofibers for bone tissue engineering. RSC Advances, 4(90), 49144–49152.CrossRefGoogle Scholar
  2. 2.
    Holzwarth, J. M., & Ma, P. X. (2011). Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials, 32(36), 9622–9629.CrossRefGoogle Scholar
  3. 3.
    Tahriri, M., & Moztarzadeh, F. (2014). Preparation, characterization, and in vitro biological evaluation of PLGA/nano-fluorohydroxyapatite (FHA) microsphere-sintered scaffolds for biomedical applications. Applied Biochemistry and Biotechnology, 172(5), 2465–2479.CrossRefGoogle Scholar
  4. 4.
    Kouhi, M., Prabhakaran, M. P., Shamanian, M., Fathi, M., Morshed, M., & Ramakrishna, S. (2015). Electrospun PHBV nanofibers containing HA and bredigite nanoparticles: fabrication, characterization and evaluation of mechanical properties and bioactivity. Composites Science and Technology, 121, 115–122.CrossRefGoogle Scholar
  5. 5.
    Venugopal, J., & Ramakrishna, S. (2005). Applications of polymer nanofibers in biomedicine and biotechnology. Applied Biochemistry and Biotechnology, 125(3), 147–157.CrossRefGoogle Scholar
  6. 6.
    Saadatkish, N., Nouri Khorasani, S., Morshed, M., Allafchian, A.-R., Beigi, M.-H., Masoudi Rad, M., Esmaeely Neisiany, R., & Nasr-Esfahani, M. H. (2018). A ternary nanofibrous scaffold potential for central nerve system tissue engineering. Journal of Biomedical Materials Research Part A, 106(9), 2394–2401.CrossRefGoogle Scholar
  7. 7.
    Ansari, N. F., & Amirul, A. A. (2013). Preparation and characterization of polyhydroxyalkanoates macroporous scaffold through enzyme-mediated modifications. Applied Biochemistry and Biotechnology, 170(3), 690–709.CrossRefGoogle Scholar
  8. 8.
    Zhao, Y., Zou, B., Shi, Z., Wu, Q., & Chen, G.-Q. (2007). The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials, 28(20), 3063–3073.CrossRefGoogle Scholar
  9. 9.
    Kouhi, M., Fathi, M., Venugopal, J. R., Shamanian, M., & Ramakrishna, S. (2018). Preparation and characterization of biohybrid poly (3-hydroxybutyrate-co-3-hydroxyvalerate) based nanofibrous scaffolds. AIP Conference Proceedings, 1920, 020014.CrossRefGoogle Scholar
  10. 10.
    Dezfuli, S. N., Huan, Z., Mol, A., Leeflang, S., Chang, J., & Zhou, J. (2017). Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications. Materials Science and Engineering C, 79, 647–660.CrossRefGoogle Scholar
  11. 11.
    Rahmati, M., Fathi, M., & Ahmadian, M. (2018). Preparation and structural characterization of bioactive bredigite (Ca 7 MgSi 4 O 16 ) nanopowder. Journal of Alloys and Compounds, 732, 9–15.CrossRefGoogle Scholar
  12. 12.
    Khandan, A., Ozada, N., Saber-Samandari, S., & Ghadiri Nejad, M. (2018). On the mechanical and biological properties of bredigite-magnetite (Ca 7 MgSi 4 O 16 -Fe 3 O 4) nanocomposite scaffolds. Ceramics International, 44(3), 3141–3148.CrossRefGoogle Scholar
  13. 13.
    Zhou, Y., Wu, C., & Xiao, Y. (2014). Silicate-based bioceramics for periodontal regeneration. Journal of Materials Chemistry B, 2(25), 3907–3910.CrossRefGoogle Scholar
  14. 14.
    Kouhi, M., Fathi, M., Prabhakaran, M. P., Shamanian, M., & Ramakrishna, S. (2018). Enhanced proliferation and mineralization of human fetal osteoblast cells on PHBV-bredigite nanofibrous scaffolds. Materials Today: Proceedings, 5(7), 15702–15709.Google Scholar
  15. 15.
    Diao, H., Si, Y., Zhu, A., Ji, L., & Shi, H. (2012). Surface modified nano-hydroxyapatite/poly (lactide acid) composite and its osteocyte compatibility. Materials Science and Engineering: C, 32(7), 1796–1801.CrossRefGoogle Scholar
  16. 16.
    Zhang, M., Ye, L., Gao, Y., Lv, X., & Chang, J. (2009). Effects of hydrolysis on dodecyl alcohol modified β-CaSiO3 particles and PDLLA/modified β-CaSiO3 composite films. Composites Science and Technology, 69(15-16), 2547–2553.CrossRefGoogle Scholar
  17. 17.
    Wang, D., Xuan, L., Zhong, H., Gong, Y., Shi, X., Ye, F., Li, Y., & Jiang, Q. (2017). Incorporation of well-dispersed calcium phosphate nanoparticles into PLGA electrospun nanofibers to enhance the osteogenic induction potential. RSC Advances, 7(39), 23982–23993.CrossRefGoogle Scholar
  18. 18.
    El-Fiqi, A., Kim, T.-H., Kim, M., Eltohamy, M., Won, J.-E., Lee, E.-J., et al. (2012). Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. Nanoscale, 4(23), 7475–7488.CrossRefGoogle Scholar
  19. 19.
    Hong, Z., Reis, R. L., & Mano, J. F. (2009). Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles. Journal of Biomedical Materials Research Part A, 88A(2), 304–313.CrossRefGoogle Scholar
  20. 20.
    Borum-Nicholas, L., & Wilson, O. C. (2003). Surface modification of hydroxyapatite. Part I. Dodecyl alcohol. Biomaterials, 24(21), 3671–3679.CrossRefGoogle Scholar
  21. 21.
    Li, Y., & Weng, W. (2008). Surface modification of hydroxyapatite by stearic acid: characterization and in vitro behaviors. Journal of Materials Science: Materials in Medicine, 19(1), 19–25.Google Scholar
  22. 22.
    Li, L., Li, G., Jiang, J., Liu, X., Luo, L., & Nan, K. (2012). Electrospun fibrous scaffold of hydroxyapatite/poly (ε-caprolactone) for bone regeneration. Journal of Materials Science: Materials in Medicine, 23(2), 547–554.Google Scholar
  23. 23.
    Kouhi, M., Shamanian, M., Fathi, M., Samadikuchaksaraei, A., & Mehdipour, A. (2016). Synthesis, characterization, in vitro bioactivity and biocompatibility evaluation of hydroxyapatite/bredigite (Ca7MgSi4O16) composite nanoparticles. JOM, 68(4), 1061–1070.CrossRefGoogle Scholar
  24. 24.
    Mirhadi, S. M., Tavangarian, F., & Emadi, R. (2012). Synthesis, characterization and formation mechanism of single-phase nanostructure bredigite powder. Materials Science and Engineering: C, 32(2), 133–139.CrossRefGoogle Scholar
  25. 25.
    Tarik Arafat, M., Lam, C. X. F., Ekaputra, A. K., Wong, S. Y., He, C., Hutmacher, D. W., Li, X., & Gibson, I. (2011). High performance additive manufactured scaffolds for bone tissue engineering application. Soft Matter, 7(18), 8013.CrossRefGoogle Scholar
  26. 26.
    Yuan, J., Zhou, S., Gu, G., & Wu, L. (2005). Effect of the particle size of nanosilica on the performance of epoxy/silica composite coatings. Journal of Materials Science, 40(15), 3927–3932.CrossRefGoogle Scholar
  27. 27.
    Zhang, Q., RongFu, H., Liang-Hong, G. (2009). One-step and high-density protein immobilization on epoxysilane-modified silica nanoparticles. Chinese Science Bulletin, 54.Google Scholar
  28. 28.
    Kim, H., Che, L., Ha, Y., & Ryu, W. H. (2014). Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Materials Science and Engineering C, 40, 324–335.CrossRefGoogle Scholar
  29. 29.
    Xu, Y., Zou, L., Lu, H., Wei, Y., Hua, J., & Chen, S. (2016). Preparation and characterization of electrospun PHBV/PEO mats: the role of solvent and PEO component. Journal of Materials Science, 51(12), 5695–5711.CrossRefGoogle Scholar
  30. 30.
    Tadokoro, H., Chatani, Y., & Yoshihara, T. (1964). Structural studies on polyethers, [–(CH2)m–O–]n. II. Molecular structure of polyethylene oxide. Macromolecular Chemistry and Physics, 73, 109–127.CrossRefGoogle Scholar
  31. 31.
    Ashuri, M., Moztarzadeh, F., Nezafati, N., Ansari Hamedani, A., & Tahriri, M. (2012). Development of a composite based on hydroxyapatite and magnesium and zinc-containing sol–gel-derived bioactive glass for bone substitute applications. Materials Science and Engineering: C, 32(8), 2330–2339.CrossRefGoogle Scholar
  32. 32.
    Ghomi, H., Fathi, M. H., & Edris, H. (2011). Preparation of nanostructure hydroxyapatite scaffold for tissue engineering applications. Journal of Sol-Gel Science and Technology, 58(3), 642–650.CrossRefGoogle Scholar
  33. 33.
    Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., & Castano, O. (2014). Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Materials Science and Engineering: C, 44, 183–190.CrossRefGoogle Scholar
  34. 34.
    Kouhi, M., Fathi, M., Prabhakaran, M. P., Shamanian, M., & Ramakrishna, S. (2018). Poly L lysine-modified PHBV based nanofibrous scaffolds for bone cell mineralization and osteogenic differentiation. Applied Surface Science, 457, 616–625.CrossRefGoogle Scholar
  35. 35.
    Wu, C., & Chang, J. (2007). Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83B(1), 153–160.CrossRefGoogle Scholar
  36. 36.
    Shirosaki, Y., Tsuru, K., Hayakawa, S., Osaka, A., Lopes, M. A., Santos, J. D., & Fernandes, M. H. (2005). In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials, 26(5), 485–493.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biomaterials Research Group, Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Center for Nanofibers and Nanotechnology, Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Faculty of Industrial Sciences and TechnologyUniversiti Malaysia PahangGambangMalaysia

Personalised recommendations