Advertisement

Applied Biochemistry and Biotechnology

, Volume 188, Issue 2, pp 326–337 | Cite as

Lipid Production by Arctic Microalga Chlamydomonas sp. KNF0008 at Low Temperatures

  • Eun Jae Kim
  • Woongsic Jung
  • Suyoun Lim
  • Sanghee Kim
  • Han-Gu Choi
  • Se Jong HanEmail author
Article
  • 123 Downloads

Abstract

A lipid-producing microalga, Chlamydomonas sp. KNF0008, collected from the Arctic was capable of growing at temperatures ranging from 4 to 20 °C, and the highest cell density was measured at 15 °C and 100 μmol photons m−2 s−1 light intensity under continuous shaking and external aeration. KNF0008 showed the elevated accumulation of lipid bodies under nitrogen-deficient conditions, rather than under nitrogen-sufficient conditions. Fatty acid production of KNF0008 was 4.2-fold (104 mg L−1) higher than that of C. reinhardtii CC-125 at 15 °C in Bold’s Basal Medium. The dominant fatty acids were C16:0, C16:4, C18:1, and C18:3, and unsaturated fatty acids (65.69%) were higher than saturated fatty acids (13.65%) at 15 °C. These results suggested that Arctic Chlamydomonas sp. KNF0008 could possibly be utilized for production of biodiesel during periods of cold weather because of its psychrophilic characteristics.

Keywords

Arctic Chlamydomonas Lipid Microalga Psychrophile 

Notes

Funding Information

The research was supported by a grant from the Korea Polar Research Institute (PE15140). This project was also supported by a grant (PN15070) of iPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries), Ministry of Agriculture, Food and Rural Affairs, Korea.

Supplementary material

12010_2018_2921_MOESM1_ESM.docx (35 kb)
ESM 1 (DOCX 34 kb)

References

  1. 1.
    Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.Google Scholar
  2. 2.
    Shin, Y. S., Choi, H. I., Choi, J. W., Lee, J. S., Sung, Y. J., & Sim, S. J. (2018). Multilateral approach on enhancing economic viability of lipid production from microalgae: a review. Bioresource Technology, 258, 335–344.Google Scholar
  3. 3.
    Demirbas, A., & Demirbas, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 52(1), 163–170.Google Scholar
  4. 4.
    Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as sources of high added-value compounds—a brief review of recent work. Biotechnology Progress, 27(3), 597–613.Google Scholar
  5. 5.
    Thanh le, T., Okitsu, K., Sadanaga, Y., Takenaka, N., Maeda, Y., & Bandow, H. (2010). A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Bioresource Technology, 101(14), 5394–5401.Google Scholar
  6. 6.
    Tang, E. P. Y., Tremblay, R., & Vincent, W. F. (1997). Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? Journal of Phycology, 33(2), 171–181.Google Scholar
  7. 7.
    Ahn, J. W., Hwangbo, K., Lee, S. Y., Choi, H. G., Park, Y. I., Liu, J. R., & Jeong, W. J. (2012). A new Arctic Chlorella species for biodiesel production. Bioresource Technology, 125, 340–343.Google Scholar
  8. 8.
    Jung, W., Kim, E. J., Lim, S., Sim, H., Han, S. J., Kim, S., Kang, S. H., & Choi, H. G. (2016). Cellular growth and fatty acid content of Arctic Chlamydomonadalean. Algae, 31(1), 61–72.Google Scholar
  9. 9.
    Noordally, Z. B., & Millar, A. J. (2015). Clocks in algae. Biochemistry, 54(2), 171–183.Google Scholar
  10. 10.
    Kim, E. J., Jung, W., Lim, S., Kim, S., Han, S. J., & Choi, H. G. (2016). Growth and lipid content at low temperature of Arctic alga Chlamydomonas sp. KNM0029C. Bioprocess and Biosystems Engineering, 39(1), 151–157.Google Scholar
  11. 11.
    Agrawal, S. C., & Sarma, Y. S. (1982). Effects of nutrients present in bold's basal medium on the green alga Stigeoclonium pascheri. Folia Microbiologia (Praha), 27(2), 131–137.Google Scholar
  12. 12.
    Saunders, G. W., & Kraft, G. T. (1994). Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta) 1. Evidence for the Plocamiales ord nov. Canadian Journal of Botany, 72, 1250–1263.Google Scholar
  13. 13.
    Smith, S. W., Overbeek, R., Woese, C. R., Gilbert, W., & Gillevet, P. M. (1994). The genetic data environment an expandable GUI for multiple sequence analysis. Computer Applications in the Biosciences, 10(6), 671–675.Google Scholar
  14. 14.
    Posada, D., & Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics, 14(9), 817–818.Google Scholar
  15. 15.
    Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755.Google Scholar
  16. 16.
    Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688–2690.Google Scholar
  17. 17.
    Sasser, M. (1990). Identification of bacterial by gas chromatography of cellular fatty acids. In. Edited by Inc. MI. Newark, DE, pp. 1–5.Google Scholar
  18. 18.
    Ettl, H. (1976). Die Gattung Chlamydomonas Ehrenberg. Beih Zur Nova Hedwig, 49, 1–1122.Google Scholar
  19. 19.
    Buchheim, M. A., Turmel, M., Zimmer, E. A., & Chapman, R. L. (1990). Phylogeny of Chlamydomonas (Chlorophyta) based on Cladistic—analysis of nuclear 18s ribosomal-RNA sequence data. Journal of Phycology, 26(4), 689–699.Google Scholar
  20. 20.
    Buchheim, M. A., Buchheim, J. A., & Chapman, R. L. (1997). Phylogeny of the VLE-14 Chlamydomonas (Chlorophyceae) group: a study of 18S rRNA gene sequences. Journal of Phycology, 33(6), 1024–1030.Google Scholar
  21. 21.
    Buchheim, M. A., Lemieux, C., Otis, C., Gutell, R. R., Chapman, R. L., & Turmel, M. (1996). Phylogeny of the Chlamydomonadales (Chlorophyceae): a comparison of ribosomal RNA gene sequences from the nucleus and the chloroplast. Molecular Phylogenetics and Evolution, 5(2), 391–402.Google Scholar
  22. 22.
    Nakada, T., Misawa, K., & Nozaki, H. (2008). Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Molecular Phylogenetics and Evolution, 48(1), 281–291.Google Scholar
  23. 23.
    Nozaki, H., Misumi, O., & Kuroiwa, T. (2003). Phylogeny of the quadriflagellate Volvocales (Chlorophyceae) based on chloroplast multigene sequences. Molecular Phylogenetics and Evolution, 29(1), 58–66.Google Scholar
  24. 24.
    Proschold, T., Marin, B., Schlosser, U. G., & Melkonian, M. (2001). Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist, 152(4), 265–300.Google Scholar
  25. 25.
    Peterson, C. L., Cook, J. L., Thompson, J. C., & Taberski, J. S. (2002). Continuous flow biodiesel production. Applied Engineering in Agriculture, 18, 5–11.Google Scholar
  26. 26.
    Davison, I. R. (1991). Environmental-effects on algal photosynthesis—temperature. Journal of Phycology, 27(1), 2–8.Google Scholar
  27. 27.
    Gounot, A. M. (1986). Psychrophilic and psychrotrophic microorganisms. Experientia, 42(11-12), 1192–1197.Google Scholar
  28. 28.
    Liu, C. L., Wang, X. L., Wang, X. N., & Sun, C. J. (2016). Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis. Extremophiles, 20(4), 437–450.Google Scholar
  29. 29.
    Lan, S. B., Wub, L., Zhang, D. L., & Hu, C. X. (2015). Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus. Bioresource Technology, 182, 144–150.Google Scholar
  30. 30.
    Yoshimura, T., Okada, S., & Honda, M. (2013). Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: optimal CO2, salinity, temperature, and irradiance conditions. Bioresource Technology, 133, 232–239.Google Scholar
  31. 31.
    Zhang, L., Chen, L., Wang, J., Chen, Y., Gao, X., Zhang, Z., & Liu, T. (2015). Attached cultivation for improving the biomass productivity of Spirulina platensis. Bioresource Technology, 181, 136–142.Google Scholar
  32. 32.
    Jeon, H., Lee, Y., Chang, K. S., Lee, C. G., & Jin, E. (2013). Enhanced production of biomass and lipids by supplying CO2 in marine microalga Dunaliella sp. Journal of Microbiology, 51(6), 773–776.Google Scholar
  33. 33.
    Anjos, M., Fernandes, B. D., Vicente, A. A., Teixeira, J. A., & Dragone, G. (2013). Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology, 139, 149–154.Google Scholar
  34. 34.
    Wang, X. W., Liang, J. R., Luo, C. S., Chen, C. P., & Gao, Y. H. (2014). Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresource Technology, 161, 124–130.Google Scholar
  35. 35.
    James, G. O., Hocart, C. H., Hillier, W., Chen, H. C., Kordbacheh, F., Price, G. D., & Djordjevic, M. A. (2011). Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresource Technology, 102(3), 3343–3351.Google Scholar
  36. 36.
    Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.Google Scholar
  37. 37.
    Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6(5), 410–417.Google Scholar
  38. 38.
    Livingston, D. P., & Henson, C. A. (1998). Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening. Plant Physiology, 116(1), 403–408.Google Scholar
  39. 39.
    Wang, X. M., Li, W. Q., Li, M. Y., & Welti, R. (2006). Profiling lipid changes in plant response to low temperatures. Physiologia Plantarum, 126(1), 90–96.Google Scholar
  40. 40.
    Kozlowski, T. T., & Pallardy, S. G. (2002). Acclimation and adaptive responses of woody plants to environmental stresses. The Botanical Review, 68(2), 270–334.Google Scholar
  41. 41.
    Chodchoey, K., & Verduyn, C. (2012). Growth, fatty acid profile in major lipid classes and lipid fluidity of Aurantiochytrium mangrovei Sk-02 as a function of growth temperature. Brazilian Journal of Microbiology, 43(1), 187–200.Google Scholar
  42. 42.
    Los, D. A., & Murata, N. (2004). Membrane fluidity and its roles in the perception of environmental signals. Biochimica et Biophysica Acta, 1666(1-2), 142–157.Google Scholar
  43. 43.
    Bhale, P. V., Deshpande, N. V., & Thombre, S. B. (2009). Improving the low temperature properties of biodiesel fuel. Renewable Energy, 34(3), 794–800.Google Scholar
  44. 44.
    Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D., Pereira, S. A., Druzian, J. I., de Souza, C. O., Vich, D. V., de Carvalho, G. C., & Nascimento, M. A. (2013). Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Research, 6(1), 1–13.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Polar Life SciencesKorea Polar Research InstituteIncheonSouth Korea
  2. 2.Department of Polar SciencesUniversity of Science and TechnologyIncheonSouth Korea
  3. 3.Department of Research and DevelopmentGDESiheungSouth Korea
  4. 4.Functional Genomics R&D TeamSyntekabioDaejeonSouth Korea

Personalised recommendations