Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1488–1501 | Cite as

Microalgal Cultivation and Nutrient Removal from Digested Piggery Wastewater in a Thin-film Flat Plate Photobioreactor

  • Zhong-liang Sun
  • Li-qin SunEmail author
  • Guo-zhong Chen
Article
  • 94 Downloads

Abstract

This work investigated the cultivation of Chlorella vulgaris in a thin-film flat plate photobioreactor under outdoor conditions and using digested piggery wastewater as the culture medium. The algal cells were able to adapt quickly to the wastewater and outdoor conditions. A specific growth rate of 0.12 day−1 was obtained in the exponential growth phase, which was slightly higher than that during indoor cultivation using artificial culture medium. Results showed that Chlorella vulgaris effectively removed TN, TP, and COD by 72.48%, 86.93%, and 85.94%. Due to the difference in culture conditions and phosphorus availability, the biomass from outdoor cultivation contained higher lipid content and more unsaturated fatty acids compared to indoor cultures, while the amino acid composition was unaffected. Results of metallic element assay indicated that the biomass cultured with wastewater conformed to the standards required for animal feed additive production. The overall cost of the biomass production in the thin-film flat plate photobioreactor (32.94 US$/kg) was estimated to be 4.67 times lower than that of indoor cultivation (154.04 US$/kg). Together, these results provide a basis for large-scale outdoor production of microalgae and wastewater bioremediation.

Keywords

Chlorella vulgaris Digested piggery wastewater Outdoor cultivation Thin-film flat plate photobioreactor 

Notes

Funding Information

This work was financially supported by a grant from the Natural Science Foundation Project Fund of Shandong Province (Grant No. ZR2016BQ45) and an Innovation Team Project for Modern Agricultural Industrial Technology Systems of Shandong Province (Grant No. SDAIT-11-10).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12010_2018_2889_MOESM1_ESM.docx (4.3 mb)
ESM 1 (DOCX 4410 kb)

References

  1. 1.
    Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnology Advances, 31(8), 1532–1542.CrossRefGoogle Scholar
  2. 2.
    Abodeely, J. M., Coleman, A. M., Stevens, D. M., Ray, A. E., Cafferty, K. G., & Newby, D. T. (2014). Assessment of algal farm designs using a dynamic modular approach. Algal Research-Biomass Biofuels and Bioproducts, 5, 264–273.Google Scholar
  3. 3.
    Zhou, W. G., Chen, P., Min, M., Ma, X. C., Wang, J. H., Griffith, R., Hussain, F., Peng, P., Xie, Q. L., Li, Y., Shi, J., Meng, J. Z., & Ruan, R. (2014). Environment-enhancing algal biofuel production using wastewaters. Renewable & Sustainable Energy Reviews, 36, 256–269.CrossRefGoogle Scholar
  4. 4.
    Cai, T., Park, S. Y., & Li, Y. B. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable & Sustainable Energy Reviews, 19, 360–369.CrossRefGoogle Scholar
  5. 5.
    Deng, X. Y., Gao, K., Zhang, R. C., Addy, M., Lu, Q., Ren, H. Y., Chen, P., Liu, Y. H., & Ruan, R. (2017). Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresource Technology, 243, 417–425.CrossRefGoogle Scholar
  6. 6.
    Jebali, A., Acien, F. G., Sayadi, S., & Molina-Grima, E. (2018). Utilization of centrate from urban wastewater plants for the production of Scenedesmus sp. in a raceway-simulating reactor. Journal of Environmental Management, 211, 112–124.CrossRefGoogle Scholar
  7. 7.
    Fernandez-Linares, L. C., Barajas, C. G., Paramo, E. D., & Corona, J. A. B. (2017). Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium. Bioresource Technology, 244(Pt 1), 400–406.CrossRefGoogle Scholar
  8. 8.
    Avagyan, A. B. (2011). Water global recourse management through the use of microalgae addressed to sustainable development. Clean Technologies and Environmental Policy, 13(3), 431–445.CrossRefGoogle Scholar
  9. 9.
    Ebrahimian, A., Kariminia, H. R., & Vosoughi, M. (2014). Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renewable Energy, 71, 502–508.CrossRefGoogle Scholar
  10. 10.
    Mehrabadi, A., Craggs, R., & Farid, M. M. (2015). Wastewater treatment high rate algal ponds (WWT-HRAP) for low-cost biofuel production. Bioresource Technology, 184, 202–214.CrossRefGoogle Scholar
  11. 11.
    Morales-Amaral, M. D., Gomez-Serrano, C., Acien, F. G., Fernandez-Sevilla, J. M., & Molina-Grima, E. (2015). Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Research-Biomass Biofuels and Bioproducts, 12, 99–108.Google Scholar
  12. 12.
    Kim, H. C., Choi, W. J., Ryu, J. H., Maeng, S. K., Kim, H. S., Lee, B. C., & Song, K. G. (2014). Optimizing cultivation strategies for robust algal growth and consequent removal of inorganic nutrients in pretreated livestock effluent. Applied Biochemistry and Biotechnology, 174(4), 1668–1682.CrossRefGoogle Scholar
  13. 13.
    Norsker, N. H., Barbosa, M. J., Vermue, M. H., & Wijffels, R. H. (2011). Microalgal production - a close look at the economics. Biotechnology Advances, 29(1), 24–27.CrossRefGoogle Scholar
  14. 14.
    Becker, E. W. (1994). Microalgae: biotechnology and microbiology. Quarterly Review of Biology, p56–p61.Google Scholar
  15. 15.
    SEPE. (2002). Water and wastewater analyzing methods. Beijing: China Environmental Science Press.Google Scholar
  16. 16.
    Tan, X. B., Zhao, X. C., Zhang, Y. L., Zhou, Y. Y., Yang, L. B., & Zhang, W. W. (2018). Enhanced lipid and biomass production using alcohol wastewater as carbon source for Chlorella pyrenoidosa cultivation in anaerobically digested starch wastewater in outdoors. Bioresource Technology, 247, 784–793.CrossRefGoogle Scholar
  17. 17.
    Sun, Z., Xue, S., Yan, C., Cong, W., & Kong, D. (2016). Utilisation of tris(hydroxymethyl)aminomethane as a gas carrier in microalgal cultivation to enhance CO2 utilisation and biomass production. RSC Advances, 6(4), 2703–2711.CrossRefGoogle Scholar
  18. 18.
    Safi, Charton, Pignolet, Silvestre and Vaca-Garcia. (2013) Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. Journal of Applied Phycology, 25, 523–529, 2.Google Scholar
  19. 19.
    Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45(1), 11–36.CrossRefGoogle Scholar
  20. 20.
    Collos, Y., & Harrison, P. J. (2014). Acclimation and toxicity of high ammonium concentrations to unicellular algae. Marine Pollution Bulletin, 80(1-2), 8–23.CrossRefGoogle Scholar
  21. 21.
    Shih, Y. J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y. H., & Lu, M. C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466–473.CrossRefGoogle Scholar
  22. 22.
    Kim, T. H., Lee, Y., Han, S. H., & Hwang, S. J. (2013). The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology, 130, 75–80.CrossRefGoogle Scholar
  23. 23.
    Michelon, W., Da Silva, M. L. B., Mezzari, M. P., Pirolli, M., Prandini, J. M., & Soares, H. M. (2016). Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate. Applied Biochemistry and Biotechnology, 178(7), 1407–1419.CrossRefGoogle Scholar
  24. 24.
    Kurade, M. B., Kim, J. R., Govindwar, S. P., & Jeon, B. H. (2016). Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Research-Biomass Biofuels and Bioproducts, 20, 126–134.Google Scholar
  25. 25.
    Chu, F. F., Chu, P. N., Shen, X. F., Lam, P. K. S., & Zeng, R. J. (2014). Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresource Technology, 152, 241–246.CrossRefGoogle Scholar
  26. 26.
    Li, Y. C., Chen, Y. F., Chen, P., Min, M., Zhou, W. G., Martinez, B., Zhu, J., & Ruan, R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 5138–5144.CrossRefGoogle Scholar
  27. 27.
    Wang, R. M., Tian, Y., Xue, S. Z., Zhang, D. M., Zhang, Q. H., Wu, X., Kong, D. Z., & Cong, W. (2016). Enhanced microalgal biomass and lipid production via co-culture of Scenedesmus obliquus and Candida tropicalis in an autotrophic system. Journal of Chemical Technology and Biotechnology, 91(5), 1387–1396.CrossRefGoogle Scholar
  28. 28.
    Salama, E. S., Kurade, M. B., Abou-Shanab, R. A. I., El-Dalatony, M. M., Yang, I. S., Min, B., & Jeon, B. H. (2017). Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable & Sustainable Energy Reviews, 79, 1189–1211.CrossRefGoogle Scholar
  29. 29.
    Gonzalez-Fernandez, C., Molinuevo-Salces, B., & Garcia-Gonzalez, M. C. (2011). Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry. Bioresource Technology, 102(2), 960–966.CrossRefGoogle Scholar
  30. 30.
    Demirbas, M. F. (2011). Biofuels from algae for sustainable development. Applied Energy, 88(10), 3473–3480.CrossRefGoogle Scholar
  31. 31.
    Klyachko-Gurvich, G., Doucha, J., Kopetskii, J., Semenenko, V., & Tsoglin, L. (2010). Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiologia Plantarum, 107, 240–249.CrossRefGoogle Scholar
  32. 32.
    Zili, F., Mezhoud, N., Trabelsi, L., Chreif, I., & Ben Ouada, H. (2015). Fatty acid composition of the thermophilic Gloeocapsa gelatinosa under different combinations of temperature, light intensity, and NaNO3 concentration. Journal of Applied Phycology, 27(1), 97–107.CrossRefGoogle Scholar
  33. 33.
    Zhu, L. D., Wang, Z. M., Takala, J., Hiltunen, E., Qin, L., Xu, Z. B., Qin, X. X., & Yuan, Z. H. (2013). Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresource Technology, 137, 318–325.CrossRefGoogle Scholar
  34. 34.
    Zielinska, A., Chojnacka, K., & Labuda, M. (2011). Technology for production of mineral feed additives based on microalgal biomass. Przemysl Chemiczny, 90, 1092–1095.Google Scholar
  35. 35.
    Li, Y., Xiao, G. Q., Mangott, A., Kent, M., & Pirozzi, I. (2016). Nutrient efficacy of microalgae as aquafeed additives for the adult black tiger prawn, Penaeus monodon. Aquaculture Research, 47(11), 3625–3635.CrossRefGoogle Scholar
  36. 36.
    Shah, M. R., Lutzu, G. A., Alam, A., Sarker, P., Chowdhury, M. A. K., Parsaeimehr, A., Liang, Y. M., & Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology, 30(1), 197–213.CrossRefGoogle Scholar
  37. 37.
    Xia, L., Song, S. X., & Hu, C. X. (2016). High temperature enhances lipid accumulation in nitrogen-deprived Scenedesmus obtusus XJ-15. Journal of Applied Phycology, 28(2), 831–837.CrossRefGoogle Scholar
  38. 38.
    Wang, S. K., Hu, Y. R., Wang, F., Stiles, A. R., & Liu, C. Z. (2014). Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology, 156, 117–122.CrossRefGoogle Scholar
  39. 39.
    Duong, V. T., Ahmed, F., Thomas-Hall, S. R., Quigley, S., Nowak, E., & Schenk, P. M. (2015). High protein- and high lipid-producing microalgae from northern Australia as potential feedstock for animal feed and biodiesel. Frontiers in Bioengineering and Biotechnology, 3, 53–60.CrossRefGoogle Scholar
  40. 40.
    Ogbonna, J. C., Masui, H., & Tanaka, H. (1997). Sequential heterotrophic/autotrophic cultivation – an efficient method of producing Chlorella biomass for health food and animal feed. Journal of Applied Phycology, 9(4), 359–366.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Life SciencesYantai UniversityYantaiPeople’s Republic of China
  2. 2.School of Life SciencesLudong UniversityYantaiPeople’s Republic of China

Personalised recommendations