Bio-guided Purification and Mass Spectrometry Characterisation Exploring the Lysozyme-like Protein from Enterococcus lactis Q1, an Unusual Marine Bacterial Strain

  • Olfa Ben BraïekEmail author
  • Slim Smaoui
  • Yannick Fleury
  • Stefano Morandi
  • Khaled Hani
  • Taoufik Ghrairi


Lactic acid bacteria produce various antibacterial peptides such as bacteriocins that are active against pathogenic and spoilage microorganisms. Very little attention has been paid to the production of lysozyme as an antimicrobial enzyme. The present work represents one of the few studies reporting lysozyme production by enterococci. Indeed, this study was first conducted to evaluate the antimicrobial activity of Enterococcus lactis Q1, an enterocin P-producing strain previously isolated from fresh shrimp (Penaeus vannamei), against multidrug-resistant clinical isolates. Results showed significant inhibitory activity (P < 0.05) towards diverse pathogens. The purification of the antimicrobial substances produced by Q1 strain leads to the isolation of two active fractions. The SDS-PAGE and mass spectrometry analyses of fraction number 2 (fraction 2) revealed the presence of a protein with molecular mass of 14.3 kDa. Additionally, the experimental results are consistent with mass spectra of industrial lysozyme (Fluka ref. 62970). The lysozyme produced by Enterococcus lactis Q1 strain was confirmed by a plate method against Micrococcus luteus ATCC 4698. Also, sensitivity of the Q1 strain to different concentrations of lysozyme was investigated. For the first time, this study shows that E. lactis Q1 produces lysozyme which could be an excellent candidate in food biopreservation or production of functional foods to promote health benefits.


Antimicrobial activity Enterococcus lactis Lysozyme Mass spectrometry RP-HPLC 


Funding Information

This work was supported by a grant from the Ministry of High Education, Tunisia.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Cavera, V. L., Arthur, T. D., Kashtanov, D., & Chikindas, M. L. (2015). Bacteriocins and their position in the next wave of conventional antibiotics. International Journal of Antimicrobial Agents, 46(5), 494–501.CrossRefGoogle Scholar
  2. 2.
    Kovalenko, N. K., & Kasumova, S. A. (1996). The lysozyme-synthesizing activity of enterococci and lactobacilli, Mikrobiolohichnyĭ Zhurnal, 58, 12–8. [In Russian, English abstract].Google Scholar
  3. 3.
    Kovalenko, N. K., Nemirovskaia, L. N., & Kasumova, S. A. (1999). The bacteriocinogenic and lysozyme-synthesizing activity of lactobacilli. Mikrobiolohichnyĭ Zhurnal, 61, 42–50. [In Russian, English abstract].Google Scholar
  4. 4.
    Saurabh, S., & Sahoo, P. K. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, 39(3), 223–239.CrossRefGoogle Scholar
  5. 5.
    Beckert, A., Wiesner, J., Baumann, A., Pöppel, A. K., Vogel, H., & Vilcinskas, A. (2015). Two c-type lysozymes boost the innate immune system of the invasive ladybird Harmonia axyridis. Development Comparative Immunology, 49(2), 303–312.CrossRefGoogle Scholar
  6. 6.
    Narmadha, G., & Yenugu, S. (2016). In silico and biochemical characterization of lysozyme-like proteins in the rat. PLoS One, 11, e01619092016.CrossRefGoogle Scholar
  7. 7.
    Brasca, M., Morandi, S., Silvetti, T., Rosi, V., Cattaneo, S., & Pellegrino, L. (2013). Different analytical approaches in assessing antibacterial activity and the purity of commercial lysozyme preparations for dairy application. Molecules, 18(5), 6008–6020.CrossRefGoogle Scholar
  8. 8.
    Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412–429.CrossRefGoogle Scholar
  9. 9.
    Ercan, D., & Demirci, A. (2016). Recent advances for the production and recovery methods of lysozyme. Critical Reviews in Biotechnology, 36(6), 1078–1088.CrossRefGoogle Scholar
  10. 10.
    Yi, S., Dai, F., Ma, Y., Yan, T., Si, Y., & Sun, G. (2017). Ultrafine silk-derived nanofibrous membranes exhibiting effective lysozyme adsorption. ACS Sustainable Chemistry and Engineering, 5(10), 8777–8784.CrossRefGoogle Scholar
  11. 11.
    Nakimbugwe, D., Masschalck, B., Anim, G., & Michiels, C. W. (2006). Inactivation of Gram-negative bacteria in milk and banana juice by hen egg white and lambda lysozyme under high hydrostatic pressure. International Journal of Food Microbiology, 112(1), 19–25.CrossRefGoogle Scholar
  12. 12.
    Bera, A., Herbert, S., Jakob, A., Vollmer, W., & Götz, F. (2005). Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Molecular Microbiology, 55, 778–787.CrossRefGoogle Scholar
  13. 13.
    Branen, J. K., & Davidson, P. M. (2004). Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. International Journal of Food Microbiology, 90(1), 63–74.CrossRefGoogle Scholar
  14. 14.
    Jay, J. M. (1966). Production of lysozyme by staphylococci and its correlation with three other extracellular substances. Journal of Biotechnology, 91, 1804–1810.Google Scholar
  15. 15.
    Holt, R. J. (1971). Lysozyme production by staphylococci and micrococci. Journal of Medical Microbiology, 4(3), 375–379.CrossRefGoogle Scholar
  16. 16.
    Ben Braïek, O., Ghomrassi, H., Cremonesi, P., Morandi, S., Fleury, Y., Le Chevalier, P., Hani, K., Bel Hadj, O., & Ghrairi, T. (2017). Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Antonie Van Leeuwenhoek, 110(6), 771–786.CrossRefGoogle Scholar
  17. 17.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.CrossRefGoogle Scholar
  18. 18.
    Morandi, S., Silvetti, T., & Brasca, M. (2013). Biotechnological and safety characterization of Enterococcus lactis, a recently described species of dairy origin. Antonie Van Leeuwenhoek, 103(1), 239–249.CrossRefGoogle Scholar
  19. 19.
    Silvetti, T., Brasca, M., Lodi, R., Vanoni, L., Chiolerio, F., de Groot, M., & Bravi, A. (2010). Effects of lysozyme on the microbiological stability and organoleptic properties of unpasteurized beer. Journal of the Institute of Brewing, 116(1), 33–40.CrossRefGoogle Scholar
  20. 20.
    van de Beek, D., de Gans, J., Tunkel, A. R., & Wijdicks, E. F. M. (2006). Community-acquired bacterial meningitis in adults. The New England Journal of Medicine, 354, 44–53.CrossRefGoogle Scholar
  21. 21.
    Safaei, H. G., Moghim, S., Isfahani, B. N., Fazeli, H., Poursina, F., Yadegari, S., Nasirmoghadas, P., Abolfazl, S., & Nodoushan, H. (2017). Distribution of the strains of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa isolates from burn patients. Advanced Biomedical Research, 6(1), 74.CrossRefGoogle Scholar
  22. 22.
    Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: the case of functional foods. Trends in Food Science & Technology, 31(2), 118–129.CrossRefGoogle Scholar
  23. 23.
    Kerry, R. G., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018). Benefaction of probiotics for human health: a review. Journal of Food and Drug Analysis, 26(3), 927–939. Scholar
  24. 24.
    Zhang, X., Wang, Y., Sun, M., Ren, X., Zou, Y., Wang, Q., & Wang, W. (2008). Purification and properties of lysozyme from a marine strain. Annals of Microbiology, 58(1), 89–94.CrossRefGoogle Scholar
  25. 25.
    Yan, L., Shen, S., Yun, J., & Yao, K. (2011). Isolation of lysozyme from chicken egg white using polacrylamide-based cation-exchange cryogel. Chinese Journal of Chemical Engineering, 19(5), 876–880.CrossRefGoogle Scholar
  26. 26.
    Derde, M., Guérin-Dubiard, C., Lechevalier, V., Cochet, M. F., Jan, S., Baron, F., Gautier, M., Vié, V., & Nau, F. (2014). Dry-heating of lysozyme increases its activity against Escherichia coli membranes. Journal of Agricultural and Food Chemistry, 62(7), 1692–1700.CrossRefGoogle Scholar
  27. 27.
    Hukić, M., Seljmo, D., Ramovic, A., Ibrišimović, M. A., Dogan, S., Hukic, J., & Feric Bojic, E. (2017). The effect of lysozyme on reducing biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, and Gardnerella vaginalis: an in vitro examination. Microbial Drug Resistance.
  28. 28.
    Cintas, L. M., Casaus, P., Havarstein, L. S., Hernandez, P. E., & Nes, I. F. (1997). Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Applied and Environmental Microbiology, 63, 4321–4330.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Olfa Ben Braïek
    • 1
    • 2
    Email author
  • Slim Smaoui
    • 3
  • Yannick Fleury
    • 4
  • Stefano Morandi
    • 5
  • Khaled Hani
    • 6
  • Taoufik Ghrairi
    • 1
    • 2
  1. 1.Laboratory of Microorganisms and Active Biomolecules (LMBA), Faculty of Sciences of TunisUniversity of Tunis El-ManarTunisTunisia
  2. 2.Research Laboratory of Environmental Science and Technology (RLEST)ISSTETechnopole de Borj CedriaTunisia
  3. 3.Laboratory of Microorganisms and Biomolecules of the Centre of Biotechnology of SfaxSfaxTunisia
  4. 4.Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et d’Écologie MicrobienneIUT de QuimperQuimperFrance
  5. 5.Italian National Research Council (CNR ISPA)Institute of Sciences of Food ProductionMilanItaly
  6. 6.Department of Biochemistry, UR12-ES03Faculty of Medicine Ibn El JazzarSousseTunisia

Personalised recommendations