Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1285–1299 | Cite as

Production of Ethyl Esters by Direct Transesterification of Microalga Biomass Using Propane as Pressurized Fluid

  • Naiane Sabedot Marcon
  • Rosicler Colet
  • Denise Bibilio
  • Adriana Marcia Graboski
  • Clarice SteffensEmail author
  • Clarissa Dalla Rosa


This work aimed to produce ethyl esters from Chlorella vulgaris microalgae biomass, using an immobilized enzymatic catalyst associated with pressurized fluid (propane) by direct transesterification. In order to optimize the ethyl conversion, different temperatures (46.7–68.1 °C) and pressures (59.5–200.5 bar) were applied a central composite design rotational (CCDR) obtaining the high conversion (74.39%) at 50 °C and 180 bar. The molar ratio also was investigated showing conversions ~ 90% using a molar ratio of 1:24 (oil:ethanol). From the best transesterification conditions, 50 °C, 180 bar, 20% enzymatic concentration, and 1:24 oil:ethanol molar ratio were obtained with success 98.9% conversion in 7 h of reaction. The enzyme reuse maintained its activity for three successive cycles. Thus, this simple process was effective to convert microalgal biomass into ethyl ester by direct transesterification and demonstrate high yields.


Chlorella vulgaris Transesterification Enzymatic catalyst Yield 



The authors would like to thank IFRS for chromatograph analyses.

Funding Information

This work is financially supported by Fapergs, URI Erechim, CNPq, and Capes.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Angarita, E. E. Y., Rocha, M. H., Lora, E. E. S., Venturini, O. J., Torre, E. A., Alves, C. T., & Restrepo, S. Y. G. (2012). Biocombustíveis de Primeira Geração: biodiesel. In Biocombustíveis, 173–300.Google Scholar
  2. 2.
    Christopher, L. P., Kumar, H., & Zambare, V. P. (2014). Enzymatic biodiesel: challenges and opportunities. Applied Energy, 119, 497–520.CrossRefGoogle Scholar
  3. 3.
    da Silva, C., & Oliveira, J. V. (2014). Biodiesel production through non-catalytic supercritical transesterification: current state and perspectives. Brazilian Journal of Chemical Engineering, 31(2), 271–285.CrossRefGoogle Scholar
  4. 4.
    FAO, Fishery Information, Data and Statistics Unit (FIDI). 2002. Fishery Statistical Collections. FIGIS DataCollection. FAO, Rome. (2006) Available from: Accessed May 02, 2018.
  5. 5.
    Rashid, N., Ur Rehman, M. S., Sadiq, M., Mahmood, T., & Han, J. I. (2014). Current status, issues and developments in microalgae derived biodiesel production. Renewable and Sustainable Energy Reviews, 40, 760–778.CrossRefGoogle Scholar
  6. 6.
    Skorupskaite, V., Makareviciene, V., & Gumbyte, M. (2016). Opportunities for simultaneous oil extraction and transesterification during biodiesel fuel production from microalgae: a review. Fuel Processing Technology, 150, 78–87.CrossRefGoogle Scholar
  7. 7.
    Brusamarelo, C. Z., Rosset, E., de Césaro, A., Treichel, H., de Oliveira, D., Mazutti, M. A., … Oliveira, J. V. (2010). Kinetics of lipase-catalyzed synthesis of soybean fatty acid ethyl esters in pressurized propane. Journal of Biotechnology, 147(2), 108–115.Google Scholar
  8. 8.
    Nelson, D. R., & Viamajala, S. (2016). One-pot synthesis and recovery of fatty acid methyl esters (FAMEs) from microalgae biomass. Catalysis Today, 269, 229, 29, 39.Google Scholar
  9. 9.
    Taher, H., Al-Zuhair, S., Al-Marzouqi, A. H., Haik, Y., Farid, M., & Tariq, S. (2014). Supercritical carbon dioxide extraction of microalgae lipid: process optimization and laboratory scale-up. The Journal of Supercritical Fluids, 86, 57–66.CrossRefGoogle Scholar
  10. 10.
    Amalia Kartika, I., Evon, P., Cerny, M., Suparno, O., Hermawan, D., Ariono, D., & Rigal, L. (2016). Simultaneous solvent extraction and transesterification of jatropha oil for biodiesel production, and potential application of the obtained cakes for binderless particleboard. Fuel, 181, 870–877.CrossRefGoogle Scholar
  11. 11.
    Salam, K. A., Velasquez-Orta, S. B., & Harvey, A. P. (2016). A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product—a review. Renewable and Sustainable Energy Reviews, 65, 1179–1198.CrossRefGoogle Scholar
  12. 12.
    Torres, S., Acien, G., García-Cuadra, F., & Navia, R. (2017). Direct transesterification of microalgae biomass and biodiesel refining with vacuum distillation. Algal Research, 28, 30–38.CrossRefGoogle Scholar
  13. 13.
    Patil, P. D., Gude, V. G., Mannarswamy, A., Deng, S., Cooke, P., Munson-McGee, S., et al. (2011). Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technology, 102(1), 118–122.CrossRefGoogle Scholar
  14. 14.
    Marcon, N. S., Colet, R., Balen, D. S., Pereira de Pereira, C. M., Bibilio, D., Priamo, W., & Rosa, C. D. (2017). Enzymatic biodiesel production from microalgae biomass using propane as pressurized fluid. The Canadian Journal of Chemical Engineering, 95(7), 1340–1344.CrossRefGoogle Scholar
  15. 15.
    Metcalfe, L. D., Schmitz, A. A., & Pelka, J. R. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical Chemistry, 38(3), 514–515.CrossRefGoogle Scholar
  16. 16.
    Hartman, L., & Lago, R. C. (1973). Rapid preparation of fatty acid methyl esters from lipids. Laboratory Practice, 22(6), 475–477.Google Scholar
  17. 17.
    Standard UNE-EN 14103, Fat and oil derivatives—fatty acid methyl esters (FAME)—determination of ester and linolenic acid methyl ester contents, issued by Asociacion Espanola de Normalizacion y Certificacion, Madrid, 2011, Available from: normas /fichanorma.asp?tipo¼N&codigo¼N0048045#.WGr fclMrJd Accessed March, 2, 2016.
  18. 18.
    Oliveira, D., Feihrmann, A. C., Rubira, A. F., Kunita, M. H., Dariva, C., & Oliveira, J. V. (2006). Assessment of two immobilized lipases activity treated in compressed fluids. The Journal of Supercritical Fluids, 38(3), 373–382.CrossRefGoogle Scholar
  19. 19.
    Castro, H. F. de, & Anderson, W. a. (1995). Fine chemicals by biotransformation using lipases. Química Nova. 18, 544–554.Google Scholar
  20. 20.
    Ríos, S. D., Castañeda, J., Torras, C., Farriol, X., & Salvadó, J. (2013). Lipid extraction methods from microalgal biomass harvested by two different paths: screening studies toward biodiesel production. Bioresource Technology, 133, 378–388.CrossRefGoogle Scholar
  21. 21.
    Knothe, G. (2009). Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science, 2(7), 759.CrossRefGoogle Scholar
  22. 22.
    Rubio-Rodríguez, N., de Diego, S. M., Beltrán, S., Jaime, I., Sanz, M. T., & Rovira, J. (2008). Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis–Merluccius paradoxus) by-products: study of the influence of process parameters on the extraction yield and oil quality. The Journal of Supercritical Fluids, 47(2), 215–226.CrossRefGoogle Scholar
  23. 23.
    Vidović, S., Mujić, I., Zeković, Z., Lepojević, Ž., Milošević, S., & Jokić, S. (2011). Extraction of fatty acids from Boletus edulis by subcritical and supercritical carbon dioxide. Journal of the American Oil Chemists’ Society, 88(8), 1189–1196.CrossRefGoogle Scholar
  24. 24.
    Knothe, G. (2006). Analyzing biodiesel: standards and other methods. Journal of the American Oil Chemists’ Society, 83(10), 823–833.CrossRefGoogle Scholar
  25. 25.
    Khan, S. A., Rashmi, Hussain, M. Z., Prasad, S., & Banerjee, U. C. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13(9), 2361–2372.Google Scholar
  26. 26.
    Huang, G., Chen, F., Wei, D., Zhang, X., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38–46.CrossRefGoogle Scholar
  27. 27.
    Barros, M., Fleuri, L. F., & Macedo, G. A. (2010). Seed lipases: sources, applications and properties—a review. Brazilian Journal of Chemical Engineering, 27(1), 15–29.CrossRefGoogle Scholar
  28. 28.
    Qian, J., Wang, F., Liu, S., & Yun, Z. (2008). In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal. Bioresource Technology, 99(18), 9009–9012.CrossRefGoogle Scholar
  29. 29.
    Trentin, C. M., Popiolki, A. S., Batistella, L., Rosa, C. D., Treichel, H., de Oliveira, D., & Oliveira, J. V. (2015). Enzyme-catalyzed production of biodiesel by ultrasound-assisted ethanolysis of soybean oil in solvent-free system. Bioprocess and Biosystems Engineering, 38(3), 437–448.CrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Li, Y., Zhang, X., & Tan, T. (2015). Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Bioresource Technology, 196, 712–715.CrossRefGoogle Scholar
  31. 31.
    Rosa, C. D., Morandim, M. B., Ninow, J. L., Oliveira, D., Treichel, H., & Oliveira, J. V. (2008). Lipase-catalyzed production of fatty acid ethyl esters from soybean oil in compressed propane. The Journal of Supercritical Fluids, 47(1), 49–53.CrossRefGoogle Scholar
  32. 32.
    Taher, H., Al-Zuhair, S., Al-Marzouqi, A., Haik, Y., & Farid, M. (2015). Growth of microalgae using CO2 enriched air for biodiesel production in supercritical CO2. Renewable Energy, 82, 61–70.CrossRefGoogle Scholar
  33. 33.
    Lam, M. K., & Lee, K. T. (2013). Catalytic transesterification of high viscosity crude microalgae lipid to biodiesel: effect of co-solvent. Fuel Processing Technology, 110, 242–248.CrossRefGoogle Scholar
  34. 34.
    Azócar, L., Navia, R., Beroiz, L., Jeison, D., & Ciudad, G. (2014). Enzymatic biodiesel production kinetics using co-solvent and an anhydrous medium: a strategy to improve lipase performance in a semi-continuous reactor. New Biotechnology, 31(5), 422–429.CrossRefGoogle Scholar
  35. 35.
    Fjerbaek, L., Christensen, K.V., & Norddahl. B. (2009). A review of the current state of biodiesel production using enzymatic transesterification. Biotechnology and Bioengineering, 102, 1298–1315, 5.Google Scholar
  36. 36.
    Noureddini, H., Gao, X., & Philkana, R. S. (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology, 96(7), 769–777.CrossRefGoogle Scholar
  37. 37.
    Li, X., Xu, H., & Wu, Q. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98(4), 764–771.CrossRefGoogle Scholar
  38. 38.
    Marjanović, A. V., Stamenković, O. S., Todorović, Z. B., Lazić, M. L., & Veljković, V. B. (2010). Kinetics of the base-catalyzed sunflower oil ethanolysis. Fuel, 89(3), 665–671.CrossRefGoogle Scholar
  39. 39.
    Rahman, M. B. A., Jumbri, K., Hanafiah, N. A. M. A., Abdulmalek, E., Tejo, B. A., Basri, M., & Salleh, A. B. (2012). Enzymatic esterification of fatty acid esters by tetraethylammonium amino acid ionic liquids-coated Candida rugosa lipase. Journal of Molecular Catalysis B: Enzymatic, 79, 61–65.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food EngineeringURI ErechimErechimBrazil
  2. 2.Department of Food TechnologyIFRS - Sertão CampusSertaoBrazil
  3. 3.Southern Frontier Federal University - Erechim CampusErechimBrazil

Personalised recommendations