Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1143–1157 | Cite as

Efficient Biosynthesis of Xylitol from Xylose by Coexpression of Xylose Reductase and Glucose Dehydrogenase in Escherichia coli

  • Li-Qun Jin
  • Wei Xu
  • Bo Yang
  • Zhi-Qiang LiuEmail author
  • Yu-Guo Zheng
Article
  • 246 Downloads

Abstract

Xylitol is an important functional sugar alcohol which is widely used in industries. To efficiently produce xylitol from xylose by xylose reductase in a single step, the coupled system and the coexpression system using xylose reductase (XR) from Rhizopus oryzae and glucose dehydrogenase (GDH) from Exiguobacterium sibiricum were constructed, the latter of which was used for cofactor regeneration. One hundred fifty grams/liter of xylose could be fully converted to xylitol by employing the two-enzyme coupled system with cell-free extract, and xylitol productivity of 21.2 g/L/h was reached by biotransformation in vitro. The whole-cell biocatalyst coexpressing xylose reductase and glucose dehydrogenase was successfully used to synthesize xylitol via enzymatic reduction of xylose. After optimization of the induction condition, the enzyme activity reached 1533 U/L. Two hundred grams/liter of xylose could be completely converted to xylitol, and the highest xylitol productivity of 6.37 g/L/h was obtained under the optimal transformation conditions. Thus, recombinant Escherichia coli coexpressing xylose reductase and glucose dehydrogenase is a promising candidate for xylitol production from xylose.

Keywords

Coexpression system Glucose dehydrogenase Xylitol Xylose reductase 

Notes

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 21602199; No. 31401527) and the Research Program of Science and Technology Department of Zhejiang Province (No. 2015C32052).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Statement

The article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Albuquerque, T. L. D., Jr, I. J. D. S., Macedo, G. R. D., & Rocha, M. V. P. (2014). Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochemistry, 49(11), 1779–1789.  https://doi.org/10.1016/j.procbio.2014.07.010.CrossRefGoogle Scholar
  2. 2.
    Granström, T. B., Izumori, K., & Leisola, M. (2007). A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Applied Microbiology and Biotechnology, 74(2), 277–281.  https://doi.org/10.1007/s00253-006-0761-3.CrossRefGoogle Scholar
  3. 3.
    Li, Z., Guo, X. X., Feng, X. D., & Li, C. (2015). An environment friendly and efficient process for xylitol bioconversion from enzymatic corncob hydrolysate by adapted Candida tropicalis. Chemical Engineering Journal, 263, 249–256.  https://doi.org/10.1016/j.cej.2014.11.013.CrossRefGoogle Scholar
  4. 4.
    Su, B., Wu, M., Zhang, Z., Lin, J., & Yang, L. (2015). Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metabolic Engineering, 31, 112–122.  https://doi.org/10.1016/j.ymben.2015.07.003.CrossRefGoogle Scholar
  5. 5.
    Murthy, G. S., Sridhar, S., Sunder, M. S., Shankaraiah, B., & Ramakrishna, M. (2005). Concentration of xylose reaction liquor by nanofiltration for the production of xylitol sugar alcohol. Separation and Purification Technology, 44(3), 205–211.  https://doi.org/10.1016/j.seppur.2005.01.007.CrossRefGoogle Scholar
  6. 6.
    Rafiqul, I. S. M., & Sakinah, A. M. M. (2013). Processes for the production of xylitol—a review. Food Reviews International, 29(2), 127–156.  https://doi.org/10.1080/87559129.2012.714434.CrossRefGoogle Scholar
  7. 7.
    Dasgupta, D., Bandhu, S., Adhikari, D. K., & Ghosh, D. (2017). Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiological Research, 197, 9–21.  https://doi.org/10.1016/j.micres.2016.12.012.CrossRefGoogle Scholar
  8. 8.
    Mohamad, N. L., Kamal, S. M. M., & Mokhtar, M. N. (2015). Xylitol biological production: a review of recent studies. Food Reviews International, 31(1), 74–89.  https://doi.org/10.1080/87559129.2014.961077.CrossRefGoogle Scholar
  9. 9.
    Pratter, S. M., Eixelsberger, T., & Nidetzky, B. (2015). Systematic strain construction and process development: xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form. Bioresource Technology, 198, 732–738.  https://doi.org/10.1016/j.biortech.2015.09.046.CrossRefGoogle Scholar
  10. 10.
    Rafiqul, I. S. M., & Sakinah, A. M. M. (2012). A perspective bioproduction of xylitol by enzyme technology and future prospects. International Food Research Journal, 19(2), 4405–4408.Google Scholar
  11. 11.
    Ramesh, S., Muthuvelayudham, R., Kannan, R. R., & Viruthagiri, T. (2013). Response surface optimization of medium composition for xylitol production by Debaryomyces hansenii var hansenii using corncob hemicellulose hydrolysate. Chemical Industry and Chemical Engineering Quarterly, 19(3), 377–384.  https://doi.org/10.2298/CICEQ120315072R.CrossRefGoogle Scholar
  12. 12.
    Su, B., Wu, M., Lin, J., & Yang, L. (2013). Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars. Biotechnology Letters, 35(11), 1781–1789.  https://doi.org/10.1007/s10529-013-1279-2.CrossRefGoogle Scholar
  13. 13.
    Jin, L. Q., Zhao, N., Liu, Z. Q., Liao, C. J., Zheng, X. Y., & Zheng, Y. G. (2017). Enhanced production of xylose from corncob hydrolysis with oxalic acid as catalyst. Bioprocess and Biosystems Engineering, 9, 1–8.  https://doi.org/10.1007/s00449-017-1843-6.Google Scholar
  14. 14.
    Khattab, S. M. R., Watanabe, S., Saimura, M., & Kodaki, T. (2011). A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis. Biochemical and Biophysical Research Communications, 404(2), 634–637.  https://doi.org/10.1016/j.bbrc.2010.12.028.CrossRefGoogle Scholar
  15. 15.
    Woodyer, R., Simurdiak, M., Wa, V., & Zhao, H. (2005). Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Applied and Environmental Microbiology, 71(3), 1642–1647.  https://doi.org/10.1128/AEM.71.3.1642-1647.2005.CrossRefGoogle Scholar
  16. 16.
    Jang, S. H., & Kang, H. Y. (2003). Complete in vitro conversion of D-xylose to xylitol by coupled xylose reductase and formate dehydrogenase. Journal of Microbiology and Biotechnology, 13(4), 501–508.Google Scholar
  17. 17.
    Wu, H., Tian, C., Song, X., Liu, C., Yang, D., & Jiang, Z. (2013). Methods for the regeneration of nicotinamide coenzymes. Green Chemistry, 15(7), 1773–1789.  https://doi.org/10.1039/c3gc37129h.CrossRefGoogle Scholar
  18. 18.
    Neuhauser, W., Steininger, M., Haltrich, D., Kulbe, K. D., & Nidetzky, B. (1998). A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration. Biotechnology and Bioengineering, 60(3), 277–282.  https://doi.org/10.1002/(SICI)1097-0290(19981105)60:3<277::AID-BIT2>3.0.CO;2-E.CrossRefGoogle Scholar
  19. 19.
    Nidetzky, B., Neuhauser, W., Haltrich, D., & Kulbe, K. D. (1996). Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnology and Bioengineering, 52(3), 387–396.  https://doi.org/10.1002/(SICI)1097-0290(19961105)52:3<387::AID-BIT4>3.0.CO;2-G.CrossRefGoogle Scholar
  20. 20.
    Zheng, Y. G., Yin, H. H., Yu, D. F., Chen, X., Tang, X. L., Zhang, X. J., Xue, Y. P., Wang, Y. J., & Liu, Z. Q. (2017). Recent advances in biotechnological applications of alcohol dehydrogenases. Applied Microbiology and Biotechnology, 101(3), 987–1001.  https://doi.org/10.1007/s00253-016-8083-6.CrossRefGoogle Scholar
  21. 21.
    Liu, Z. Q., Wu, L., Zheng, L., Wang, W. Z., Zhang, X. J., Jin, L. Q., & Zheng, Y. G. (2018). Biosynthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by carbonyl reductase from Rhodosporidium toruloides in mono and biphasic media. Bioresource Technology, 249, 161–167.  https://doi.org/10.1016/j.biortech.2017.09.204.CrossRefGoogle Scholar
  22. 22.
    Liu, Z. Q., Dong, S. C., Yin, H. H., Xue, Y. P., Tang, X. L., Zhang, X. J., He, J. Y., & Zheng, Y. G. (2017). Enzymatic synthesis of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase in an aqueous-organic solvent system. Bioresource Technology, 229, 26–32.  https://doi.org/10.1016/j.biortech.2016.12.098.CrossRefGoogle Scholar
  23. 23.
    Liu, Z. Q., Wu, L., Zhang, X. J., Xue, Y. P., & Zheng, Y. G. (2017). Directed evolution of carbonyl reductase from Rhodosporidium toruloides and its application in stereoselective synthesis of tert butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate. Journal of Agricultural and Food Chemistry, 65(18), 3721–3729.  https://doi.org/10.1021/acs.jafc.7b00866.CrossRefGoogle Scholar
  24. 24.
    Liu, Z. Q., Hu, Z. L., Zhang, X. J., Tang, X. L., Cheng, F., Xue, Y. P., Wang, Y. J., Wu, L., Yao, D. K., Zhou, Y. T., & Zheng, Y. G. (2017). Large-scale synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by a stereoselective carbonyl reductase with high substrate concentration and product yield. Biotechnology Progress, 33(3), 612–620.  https://doi.org/10.1002/btpr.2460.CrossRefGoogle Scholar
  25. 25.
    Luo, X., Wang, Y. J., Shen, W., & Zheng, Y. G. (2016). Activity improvement of a Kluyveromyces lactis aldo-keto reductase KlAKR via rational design. Journal of Biotechnology, 224, 20–26.  https://doi.org/10.1016/j.jbiotec.2016.03.008.CrossRefGoogle Scholar
  26. 26.
    Zhang, M., Jiang, S. T., Zheng, Z., Li, X. J., Luo, S. Z., & Wu, X. F. (2015). Cloning, expression, and characterization of a novel xylose reductase from Rhizopus oryzae. Journal of Basic Microbiology, 55(7), 907–921.  https://doi.org/10.1002/jobm.201400786.CrossRefGoogle Scholar
  27. 27.
    Liu, Z. Q., Ye, J. J., Shen, Z. Y., Hong, H. B., Yan, J. B., Lin, Y., Chen, Z. X., Zheng, Y. G., & Shen, Y. C. (2015). Upscale production of ethyl (S)-4-chloro-3-hydroxybutanoate by using carbonyl reductase coupled with glucose dehydrogenase in aqueous-organic solvent system. Applied Microbiology and Biotechnology, 99(5), 2119–2129.  https://doi.org/10.1007/s00253-014-6245-y.CrossRefGoogle Scholar
  28. 28.
    Galkin, A., Kulakova, L., Yoshimura, T., Soda, K., & Esaki, N. (1997). Synthesis of optically active amino acids from alpha-keto acids with Escherichia coli cells expressing heterologous genes. Applied and Environmental Microbiology, 63(12), 4651–4656.Google Scholar
  29. 29.
    Hashimoto, S., & Ozaki, A. (1999). Whole microbial cell processes for manufacturing amino acids, vitamins or ribonucleotides. Current Opinion in Biotechnology, 10(6), 604–608.  https://doi.org/10.1016/S0958-1669(99)00041-5.CrossRefGoogle Scholar
  30. 30.
    Wu, X., Gou, X., & Chen, Y. (2015). Enzymatic preparation of t-butyl-6-cyano-(3R,5R)-dihydroxyhexanoate by a whole-cell biocatalyst co-expressing carbonyl reductase and glucose dehydrogenase. Process Biochemistry, 50(1), 104–110.  https://doi.org/10.1016/j.procbio.2014.10.023.CrossRefGoogle Scholar
  31. 31.
    Volontè, F., Marinelli, F., Gastaldo, L., Sacchi, S., Pilone, M. S., Pollegioni, L., & Molla, G. (2008). Optimization of glutaryl-7-aminocephalosporanic acid acylase expression in E. coli. Protein Expression and Purification, 61(2), 131–137.  https://doi.org/10.1016/j.pep.2008.05.010.CrossRefGoogle Scholar
  32. 32.
    Wang, Y. H., Jing, C. F., Yang, B., Mainda, G., Dong, M. L., & Xu, A. L. (2005). Production of a new sea anemone neurotoxin by recombinant Escherichia coli: optimization of culture conditions using response surface methodology. Process Biochemistry, 40(8), 2721–2728.  https://doi.org/10.1016/j.procbio.2004.12.024.CrossRefGoogle Scholar
  33. 33.
    Pan, H., Xie, Z., Bao, W., & Zhang, J. (2008). Optimization of culture conditions to enhance cis-epoxysuccinate hydrolase production in Escherichia coli by response surface methodology. Biochemical Engineering Journal, 42(2), 133–138.  https://doi.org/10.1016/j.bej.2008.06.007.CrossRefGoogle Scholar
  34. 34.
    Hollmann, F., Arends, I. W. C. E., & Buehler, K. (2010). Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. Chemcatchem, 41(42), 762–782.  https://doi.org/10.1002/cctc.201000069.CrossRefGoogle Scholar
  35. 35.
    Chen, X., Liu, Z. Q., Lin, C. P., & Zheng, Y. G. (2016). Chemoenzymatic synthesis of (S)-duloxetine using carbonyl reductase from Rhodosporidium toruloides. Bioorganic Chemistry, 65, 82–89.  https://doi.org/10.1016/j.bioorg.2016.02.002.CrossRefGoogle Scholar
  36. 36.
    Zhang, J., Tao, S., Zhang, B., Wu, X., & Chen, Y. (2014). Microparticle-based strategy for controlled release of substrate for the biocatalytic preparation of L-homophenylalanine. ACS Catalysis, 4(5), 1584–1587.  https://doi.org/10.1021/cs4011919.CrossRefGoogle Scholar
  37. 37.
    Kim, H., Lee, H. S., Park, H., Lee, D. H., Boles, E., Chung, D., & Park, Y. C. (2017). Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H+ symporter and Scheffersomyces stipitis xylose reductase in recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 107, 7–14.  https://doi.org/10.1016/j.enzmictec.2017.07.014.CrossRefGoogle Scholar
  38. 38.
    Wang, X. X., Lin, C. P., Zhang, X. J., Liu, Z. Q., & Zheng, Y. G. (2018). Improvement of a newly cloned carbonyl reductase and its application to biosynthesize chiral intermediate of duloxetine. Process Biochemistry, 70, 124–128.  https://doi.org/10.1016/j.procbio.2018.04.010.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhouPeople’s Republic of China
  2. 2.Engineering Research Center of Bioconversion and Biopurification, Ministry of EducationZhejiang University of TechnologyHangzhouPeople’s Republic of China

Personalised recommendations