Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1158–1172 | Cite as

Biochemical Properties and Catalytic Specificity of a Novel Neutral Serine Peptidase Secreted by Fungus Pyrenochaetopsis sp.

  • Ronivaldo Rodrigues da Silva
  • Nathalia Gonsales da Rosa
  • Lilian Caroline Gonçalves de Oliveira
  • Maria Aparecida Juliano
  • Luiz Juliano
  • Jose C. Rosa
  • Hamilton CabralEmail author
Article
  • 101 Downloads

Abstract

The fungal genus Pyrenochaetopsis has received particular attention because of its different lifestyles, such as numerous plant pathogenic, saprophytic, and endophytic species. Its ability to infect plant cells relies heavily upon secreted peptidases. Here, we investigated the biochemical properties and catalytic specificity of a new serine peptidase secreted by the filamentous fungus Pyrenochaetopsis sp. We found that while this neutral serine peptidase displayed optimal activity at a pH of 7.0 and temperature of 45 °C, it tolerated a wide range of pH conditions and temperatures lower than 45 °C. Its peptidase activity was depressed by some metallic ions (such as aluminum, cobalt, and copper (II) chloride) and enhanced by others (such as sodium, lithium, magnesium, potassium, calcium, and manganese). Lastly, the enzyme showed the greatest specificity for non-polar amino acids, particularly leucine and isoleucine, and moderate specificity for basic and neutral polar amino acids. It displayed the least specificity for acidic residues.

Keywords

Enzyme Fungal protease Proteolytic enzymes Pathogen Pyrenochaetopsis 

Notes

Funding Information

The authors would like to acknowledge the financial support provided by Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP (process 2011/06986-0 and 2012/24703-8), Conselho Nacional de Desenvolvimento Científico e Tecnológico, and Instituto Nacional de Ciência e Tecnologia-Rede de Biotecnologia Farmacêutica.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no financial or commercial conflict of interest.

References

  1. 1.
    De Gruyter, J., Woudenberg, J. H., Aveskamp, M. M., Verkley, G. J., Groenewald, J. Z., & Crous, P. W. (2010). Systematic reappraisal of species in phomasection paraphoma, pyrenochaeta and pleurophoma. Mycologia, 102(5), 1066–1081.CrossRefGoogle Scholar
  2. 2.
    Silva, R. R. (2018). Commentary: fungal lifestyle reflected in serine protease repertoire. Frontiers in Microbiology, 9, 467.  https://doi.org/10.3389/fmicb.2018.00467.CrossRefGoogle Scholar
  3. 3.
    Stotz, H. U., Mitrousia, G. K., de Wit, P. J. G. M., & Fitt, B. D. L. (2014). Effector-triggered defence against apoplastic fungal pathogens. Trends in Plant Science, 19(8), 491–500.CrossRefGoogle Scholar
  4. 4.
    Silva, R. R., Caetano, R. C., Okamoto, D. N., de Oliveira, L. C. G., Bertolin, T. C., Juliano, M. A., Juliano, L., Oliveira, A. H. C., Rosa, J. C., & Cabral, H. (2014). The identification and biochemical properties of the catalytic specificity of a serine peptidase secreted by Aspergillus fumigatus Fresenius. Protein and Peptide Letters, 21, 663–671.CrossRefGoogle Scholar
  5. 5.
    Silva, R. R. (2017). Bacterial and fungal proteolytic enzymes: production, catalysis and potential applications. Applied Biochemistry and Biotechnology, 183(1), 1–19.  https://doi.org/10.1007/s12010-017-2427-2.CrossRefGoogle Scholar
  6. 6.
    Schechter, I., & Berger, A. (1967). On the size of the active site in proteases. I. Papain. Biochemical and Biophysical Research Communications, 27(2), 157–162.CrossRefGoogle Scholar
  7. 7.
    Tran, L. H., & Nagano, H. (2002). Isolation and characteristics of Bacillus subtilis CN2 and its collagenase production. Journal of Food Science, 67(3), 1184–1187.CrossRefGoogle Scholar
  8. 8.
    Silva, R. R., Cabral, T. P. F., Rodrigues, A., & Cabral, H. (2013). Brazilian Journal of Microbiology, 44, 235–243.CrossRefGoogle Scholar
  9. 9.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.CrossRefGoogle Scholar
  10. 10.
    Silva, R. R., Souto, T. B., Oliveira, T. B., Oliveira, L. C. G., Karcher, D., Juliano, M. A., Juliano, L., Oliveira, A. H. C., Rodrigues, A., Rosa, J. C., & Cabral, H. (2016). Evaluation of the catalytic specificity, biochemical properties, and milk clotting abilities of an aspartic peptidase from Rhizomucor miehei. Journal of Industrial Microbiology & Biotechnology, 43(8), 1059–1069.CrossRefGoogle Scholar
  11. 11.
    Silva, R. R., de Oliveira, L. C., Juliano, M. A., Juliano, L., de Oliveira, A. H., Rosa, J. C., & Cabral, H. (2017). Biochemical and milk-clotting properties and mapping of catalytic subsites of an extracellular aspartic peptidase from basidiomycete fungus Phanerochaete chrysosporium. Food Chemistry, 225, 45–54.  https://doi.org/10.1016/j.foodchem.2017.01.009.CrossRefGoogle Scholar
  12. 12.
    Silva, R. R., Oliveira, L. C. G., Juliano, M. A., Juliano, L., Rosa, J. C., & Cabral, H. (2017). Activity of a peptidase secreted by Phanerochaete chrysosporium depends on lysine to subsite S’ 1. International Journal of Biological Macromolecules, 94(Pt A), 474–483.CrossRefGoogle Scholar
  13. 13.
    Meyers, S. P., & Ahearn, D. G. (1977). Extracellular proteolysis by Candida lipolytica. Mycologia, 69(3), 646–651.CrossRefGoogle Scholar
  14. 14.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.CrossRefGoogle Scholar
  15. 15.
    See, Y. S., & Jackowski, G. (1989). In T. E. Creigton (Ed.), Protein structure a practical approach: estimating molecular weights of polypeptides by SDS gel electrophoresis (pp. 1–19). New York: Oxford University.Google Scholar
  16. 16.
    Klemencic, I., Carmona, A. K., Cezari, M. H. S., Juliano, M. A., Juliano, L., Guncar, G., Turk, D., Krizaj, I., Turk, V., & Turk, B. (2000). Biochemical characterization of human cathepsin X revealed that the enzyme is an exopeptidase, acting as carboxymonopeptidase or carboxydipeptidase. European Journal of Biochemistry, 267(17), 5404–5412.CrossRefGoogle Scholar
  17. 17.
    Merheb-Dini, C., Cabral, H., Leite, R. S. R., Zanphorlin, L. M., Okamoto, D. N., Rodriguez, G. O. B., Juliano, L., Arantes, E. C., Gomes, E., & Da Silva, R. (2009). Biochemical and functional characterization of a metalloprotease from the thermophilic fungus Thermoascus aurantiacusJournal of Agricultural and Food Chemistry, 57(19), 9210–9217.CrossRefGoogle Scholar
  18. 18.
    Graminho, E. R., Silva, R. R., Cabral, T. P. F., Arantes, E. C., da Rosa, N. G., Juliano, L., Okamoto, D. N., Oliveira, L. C. G., Kondo, M. Y., Juliano, M. A., & Cabral, H. (2013). Purification, characterization, and specificity determination of a new serine protease secreted by Penicillium waksmanii. Applied Biochemistry and Biotechnology, 169(1), 201–214.CrossRefGoogle Scholar
  19. 19.
    Hajji, M., Kanoun, S., Nasri, M., & Gharsallah, N. (2007). Purification and characterization of an alkaline serine-protease produced by a new isolated Aspergillus clavatus ES1. Process Biochemistry, 42(5), 791–797.CrossRefGoogle Scholar
  20. 20.
    Ida, E. L., Silva, R. R., Oliveira, T. B., Souto, T. B., Leite, J. A., Rodrigues, A., & Cabral, H. (2016). Biochemical properties and evaluation of washing performance in commercial detergent compatibility of two collagenolytic serine peptidases secreted by Aspergillus fischeri and Penicillium citrinumPreparative Biochemistry & Biotechnology, 47, 281–290.Google Scholar
  21. 21.
    Biaggio, R. T., Silva, R. R., Da Rosa, N. G., Leite, R. S. R., Arantes, E. C., Cabral, T. P. F., Juliano, M. A., Juliano, M., & Cabral, H. (2016). Purification and biochemical characterization of an extracellular serine peptidase from Aspergillus terreus. Preparative Biochemistry & Biotechnology, 46(3), 298–304.CrossRefGoogle Scholar
  22. 22.
    Watson, D. S., Feng, X., Askew, D. S., Jambunathan, K., Kodukula, K., & Galande, A. K. (2011). Substrate specifity profiling on the Aspergillus fumigatus proteolytic secretome reveals consensus motifs with predominance of Ile/Leu and Phe/Tyr. PLoS One, 6, 1–13.Google Scholar
  23. 23.
    Valenzuela-Lopez, N., Cano-Lira, J. F., Guarro, J., Sutton, D. A., Wiederhold, N., Crous, P. W., & Stchige, A. M. (2018). Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Studies in Mycology, 90, 1–69, 2018.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ronivaldo Rodrigues da Silva
    • 1
  • Nathalia Gonsales da Rosa
    • 2
  • Lilian Caroline Gonçalves de Oliveira
    • 3
  • Maria Aparecida Juliano
    • 3
  • Luiz Juliano
    • 3
  • Jose C. Rosa
    • 4
  • Hamilton Cabral
    • 2
    Email author
  1. 1.Instituto de Biociências, Letras e Ciências ExatasUniversidade Estadual Paulista “Júlio de Mesquita Filho”São José do Rio PretoBrazil
  2. 2.Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  3. 3.Universidade Federal de São Paulo – UNIFESPSão PauloBrazil
  4. 4.Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations