Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1475–1487 | Cite as

Integrated Use of Maize Bran Residue for One-Step Phosphate Bio-Fertilizer Production

  • Haiyan Zhang
  • Yong LiuEmail author
  • Gang WangEmail author


The development of bio-fertilizer inoculants is important and desirable. Two phosphate-solubilizing Bacillus subtilis strains were inoculated onto maize bran residue (MBR), which was used as bio-fertilizer carrier and a primary source of nutrients in a medium used for semi-solid fermentation. Water holding capacity, swelling capacity, scanning electron microscopy, and shelf-life assays demonstrated that ground MBR had satisfactory properties for a bio-fertilizer carrier. The maximal soluble phosphorus (P) reached 642.7 ± 0.43 mg l−1 in an orthogonal test under the following optimal conditions: a pH of 7.0, a cultivation temperature of 31 °C, a medium water content of 160%, and a filling capacity of 500 g l−1. The bio-fertilizer produced by MBR improved the growth of wheat (Triticum aestivum L.) and Chinese cabbage (Brassica rapa pekinensis) with respect to plant height (by up to 18.36%) and the lengths of roots (by up to 34.03%, 27.22%, separately) in a pot experiment. This study integrated the production and storage of a bio-fertilizer to realize the one-step production of a solid bio-fertilizer using MBR.


Maize bran residues Phosphate-solubilizing bacteria Bio-fertilizer Carrier Pot experiment 


Funding Information

This work was supported by the financial support of the science and technology key project of agriculture in Henan province (Grant No. 182102110015) and postdoctoral research sponsorship in Henan province (Grant No.2015030).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sharpley, A. N. (1995). Soil phosphorus dynamics: agronomic and environmental impacts. Ecological Engineering, 5(2-3), 261–279.CrossRefGoogle Scholar
  2. 2.
    Shenoy, V. V., & Kalagudi, G. M. (2005). Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnology Advances, 23(7-8), 501–513.CrossRefGoogle Scholar
  3. 3.
    Bojinova, D., Velkova, R., & Ivanova, R. (2008). Solubilization of Morocco phosphorite by Aspergillus niger. Bioresource Technology, 99(15), 348–353.CrossRefGoogle Scholar
  4. 4.
    Ogbo, F. C. (2010). Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresource Technology, 101(11), 4120–4124.CrossRefGoogle Scholar
  5. 5.
    Zhu, H. J., Sun, L. F., Zhang, Y. F., Zhang, X. L., & Qiao, J. J. (2012). Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7. Bioresource Technology, 111, 410–416.CrossRefGoogle Scholar
  6. 6.
    Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971.CrossRefGoogle Scholar
  7. 7.
    Ruízvaldiviezo, V. M., Canseco, L. M., Suárez, L. A., Gutiérrezmiceli, F. A., & Dendooven, L. (2015). Symbiotic potential and survival of native rhizobia kept on different carriers. Brazilian Journal of Microbiology, 46(3), 735–742.CrossRefGoogle Scholar
  8. 8.
    Zhu, H. J., Sun, L. F., Zhang, Y. F., Zhang, X. L., & Qiao, J. J. (2013). Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production. Bioresource Technology, 136, 257–266.CrossRefGoogle Scholar
  9. 9.
    Zhang, J. S., Zhang, J. J., & Zang, L. H. (2015). Thermophilic bio-hydrogen production from maize-bran residue pretreated by calcined-lime mud from papermaking process. Bioresource Technology, 198, 564–570.CrossRefGoogle Scholar
  10. 10.
    Baek, J. J., Kim, Y. W., & Lee, S. Y. (2014). Functional characterization of extruded rice noodles with maize bran: Xanthophyll content and rheology. Journal of Cereal Science, 60(2), 311–316.CrossRefGoogle Scholar
  11. 11.
    Zhao, S. Q., Yao, S. W., Ou, S. Y., Lin, J., Wang, Y., & Peng, X. C. (2014). Preparation of ferulic acid from corn bran: its improved extraction and purification by membrane separation. Food and Bioproducts Processing, 92(3), 309–313.CrossRefGoogle Scholar
  12. 12.
    Pikovskaya, R. E. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologia, 17, 362–370.Google Scholar
  13. 13.
    Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J. F. (2000). Hydration properties of dietary fibre and resistant starch: a European collaborative study. LWT-Food Sci Technol, 33(2), 72–79.CrossRefGoogle Scholar
  14. 14.
    Wang, T., Sun, X. H., Raddatz, J., & Chen, G. B. (2013). Effects of microfluidization on microstructure and physicochemical properties of maize bran. Journal of Cereal Science, 58(2), 355–361.CrossRefGoogle Scholar
  15. 15.
    Chau, C. F., Wen, Y. L., & Wang, Y. T. (2006). Effects of micronisation on the characteristics and physicochemical properties of insoluble fibres. Journal of the Science of Food and Agriculture, 86(14), 2380–2386.CrossRefGoogle Scholar
  16. 16.
    Gupta, P., & Premavalli, K. S. (2010). Effect of particle size reduction on physicochemical properties of ash gourd (Benincasa hispida) and radish (Raphanus sativus) fibres. International Journal of Food Sciences and Nutrition, 61(1), 18–28.CrossRefGoogle Scholar
  17. 17.
    Wang, H. Y., Liu, S., Zhai, L. M., Zhang, J. Z., Ren, T. Z., FAN, B. Q., & Liu, H. B. (2015). Preparation and utilization of phosphate biofertilizers using agricultural waste. Journal of Integrative Agriculture, 14(1), 158–167.CrossRefGoogle Scholar
  18. 18.
    Mittal, V., singh, O., Nayyar, H., Kaur, J., & Tewari, R. (2008). Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biology and Biochemistry, 40(3), 718–727.CrossRefGoogle Scholar
  19. 19.
    Jain, R., Saxena, J., & Sharma, V. (2012). Effects of phosphate-solubilzing fungi Aspergillus awamori S29 on mungbean growth. Folia Microbiologica, 57(6), 533–541.CrossRefGoogle Scholar
  20. 20.
    Bolan, N. S., Hedley, M. J., & White, R. E. (1991). Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant and Soil, 134(1), 53–63.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life ScienceHenan UniversityKaifengPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringHenan UniversityKaifengChina

Personalised recommendations