Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1515–1538 | Cite as

Integrated Functional-Omics Analysis of Thermomyces lanuginosus Reveals its Potential for Simultaneous Production of Xylanase and Substituted Xylooligosaccharides

  • Zelu Shi
  • Weili Gong
  • Lili Zhang
  • Lin Dai
  • Guanjun Chen
  • Lushan WangEmail author
Article

Abstract

Thermophiles have several beneficial properties for the conversion of biomass at high temperatures. Thermomyces lanuginosus is a thermophilic filamentous fungus that was shown to secrete 40 glycoside hydrolases and 25 proteases when grown on different carbon sources. Among the 13 identified glycoside hydrolases with high expression levels, 9 were reduced sugar glycosidases (RSGs) belonging to seven GH families, and 7 of the 10 identified proteases were exopeptidases belonging to six different protease families. High expression of RSGs and exopeptidases may allow the fungus to efficiently degrade oligosaccharides and oligopeptides in saprophytic habitats. There were no xylan side chain-degrading enzymes predicted in the genome of T. lanuginosus, and only one thermophilic GH11 xylanase (g4601.t1) and one GH43 xylosidase (g3706.t1) were detected by liquid chromatography-mass spectrometry/mass spectrometry when T. lanuginosus grown on xylan, which led to the accumulation of substituted xylooligosaccharides (SXOS) during corncob xylan degradation where SXOS output made up more than 8% of the total xylan. The SXOS are beneficial prebiotics and important inducers for enzymes secretion of microorganisms. Thus, T. lanuginosus exhibits distinct advantages in utilizing cheap raw materials producing one thermostable xylanase and the high value-added SXOS as well as microbial inoculants to compost by batch fermentation.

Keywords

Thermomyces lanuginosus Integrated functional-omics Secretome Industrial applications Substituted xylooligosaccharides (SXOS) 

Notes

Funding Information

This work was funded by The National Natural Science Foundation of China (31770054), The National Key Research and Development Program of China (2016YFD0800601), and The Key Technologies R&D Program of Shandong Province (2015GSF121019).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12010_2018_2873_MOESM1_ESM.docx (16.3 mb)
ESM 1 (DOCX 16660 kb)

References

  1. 1.
    Cooney, D. G., & Emerson, R. (1964). Thermophilic fungi. An account of their biology, activities, and classification. New York: W.H. Freeman and Co.Google Scholar
  2. 2.
    Li, F. L. (2015). Thermophilic microorganisms. Norfolk: Caister Academic Press.Google Scholar
  3. 3.
    Frock, A. D., & Kelly, R. M. (2012). Extreme thermophiles: moving beyond single-enzyme biocatalysis. Current Opinion in Chemical Engineering, 1(4), 363–372.CrossRefGoogle Scholar
  4. 4.
    Olson, D. G., McBride, J. E., Shaw, A. J., & Lynd, L. R. (2012). Recent progress in consolidated bioprocessing. Current Opinion in Biotechnology, 23(3), 396–405.CrossRefGoogle Scholar
  5. 5.
    Shukla, P. (2016). Microbial Biotechnology: an interdisciplinary approach. Boca Raton London New York: CRC Press.CrossRefGoogle Scholar
  6. 6.
    Anbar, M., Gul, O., Lamed, R., Sezerman, U. O., & Bayer, E. A. (2012). Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Applied and Environmental Microbiology, 78(9), 3458–3464.CrossRefGoogle Scholar
  7. 7.
    Xia, Y., Fang, H. H. P., & Zhang, T. (2013). Recent studies on thermophilic anaerobic bioconversion of lignocellulosic biomass. RSC Advances, 3(36), 15528–15542.CrossRefGoogle Scholar
  8. 8.
    Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Thermophilic fungi: their physiology and enzymes. Microbiology and Molecular Biology Reviews, 64(3), 461–488.CrossRefGoogle Scholar
  9. 9.
    Manimaran, A., Kumar, K. S., Permaul, K., & Singh, S. (2009). Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Applied Microbiology and Biotechnology, 81(5), 887–893.CrossRefGoogle Scholar
  10. 10.
    Purkarthofer, H., Sinner, M., & Steiner, W. (1993). Cellulase-free xylanase from Thermomyces lanuginosus: optimization of production in submerged and solid-state culture. Enzyme and Microbial Technology, 15(8), 677–682.CrossRefGoogle Scholar
  11. 11.
    Winger, A. M., Heazlewood, J. L., Chan, L. J., Petzold, C. J., Permaul, K., & Singh, S. (2014). Secretome analysis of the thermophilic xylanase hyper-producer Thermomyces lanuginosus SSBP cultivated on corn cobs. Journal of Industrial Microbiology & Biotechnology, 41(11), 1687–1696.CrossRefGoogle Scholar
  12. 12.
    Zhang, L., Ma, H., Zhang, H., Xun, L., Chen, G., & Wang, L. (2015). Thermomyces lanuginosus is the dominant fungus in maize straw composts. Bioresource Technology, 197, 266–275.CrossRefGoogle Scholar
  13. 13.
    Viikari, L., Kantelinen, A., Sundquist, J., & Linko, M. (1994). Xylanases in bleaching: from an idea to the industry. FEMS Microbiology Reviews, 13(2-3), 335–350.CrossRefGoogle Scholar
  14. 14.
    Beg, Q., Kapoor, M., Mahajan, L., & Hoondal, G. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56(3-4), 326–338.CrossRefGoogle Scholar
  15. 15.
    Subramaniyan, S., & Prema, P. (2002). Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Critical Reviews in Biotechnology, 22(1), 33–64.CrossRefGoogle Scholar
  16. 16.
    Chutani, P., & Sharma, K. K. (2015). Biochemical evaluation of xylanases from various filamentous fungi and their application for the deinking of ozone treated newspaper pulp. Carbohydrate Polymers, 127, 54–63.CrossRefGoogle Scholar
  17. 17.
    Fernandez-Lafuente, R. (2010). Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 62(3-4), 197–212.CrossRefGoogle Scholar
  18. 18.
    Khan, F. I., Govender, A., Permaul, K., Singh, S., & Bisetty, K. (2015). Thermostable chitinase II from Thermomyces lanuginosus SSBP: Cloning, structure prediction and molecular dynamics simulations. Journal of Theoretical Biology, 374, 107–114.CrossRefGoogle Scholar
  19. 19.
    Shrivastava, S., Shukla, P., Deepalakshmi, P. D., & Mukhopadhyay, K. (2013). Characterization, cloning and functional expression of novel xylanase from Thermomyces lanuginosus SS-8 isolated from self-heating plant wreckage material. World Journal of Microbiology and Biotechnology, 29(12), 2407–2415.CrossRefGoogle Scholar
  20. 20.
    Zheng, Y. Y., Guo, X. H., Song, N. N., & Li, D. C. (2011). Thermophilic lipase from Thermomyces lanuginosus: gene cloning, expression and characterization. Journal of Molecular Catalysis B: Enzymatic, 69(3-4), 127–132.CrossRefGoogle Scholar
  21. 21.
    Xu, R., Zhang, Y., Xie, C., Zhang, C., & Li, D. (2010). Cloning of glucoamylase gene (gla) from Thermomyces lanuginosus and its expression in Pichia pastoris. Journal of Agricultural Biotechnology, 18, 362–367.Google Scholar
  22. 22.
    Palanivelu, P., & Lakshmi, V. (2013). Molecular cloning and characterization of a chitinase gene from the thermophilic fungus, Thermomyces lanuginosus-RMB. IOSR Journal of Pharmacy and Biological Sciences, 5(2), 99–107.CrossRefGoogle Scholar
  23. 23.
    Gramany, V., Khan, F. I., Govender, A., Bisetty, K., Singh, S., & Permaul, K. (2016). Cloning, expression, and molecular dynamics simulations of a xylosidase obtained from Thermomyces lanuginosus. Journal of Biomolecular Structure and Dynamics, 34(8), 1681–1692.CrossRefGoogle Scholar
  24. 24.
    Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., & Graham Cooks, R. (2005). The Orbitrap: a new mass spectrometer. Journal of mass spectrometry : JMS, 40(4), 430–443.CrossRefGoogle Scholar
  25. 25.
    Gong, W., Zhang, H., Liu, S., Zhang, L., Gao, P., Chen, G., & Wang, L. (2015). Comparative secretome analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum during solid-state fermentation. Applied Biochemistry and Biotechnology, 177(6), 1252–1271.CrossRefGoogle Scholar
  26. 26.
    McHunu, N. P., Permaul, K., Abdul Rahman, A. Y., Saito, J. A., Singh, S. & Alam, M. (2013). Xylanase Superproducer: genome sequence of a compost-loving thermophilic fungus, Thermomyces lanuginosus Strain SSBP. Genome announcements, 1.Google Scholar
  27. 27.
    Xing, S., Li, G., Sun, X., Ma, S., Chen, G., Wang, L., & Gao, P. (2013). Dynamic changes in xylanases and beta-1,4-endoglucanases secreted by Aspergillus niger An-76 in response to hydrolysates of lignocellulose polysaccharide. Applied Biochemistry and Biotechnology, 171, 832–846.CrossRefGoogle Scholar
  28. 28.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.CrossRefGoogle Scholar
  29. 29.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.CrossRefGoogle Scholar
  30. 30.
    Zhang, Q., Zhang, X., Wang, P., Li, D., Chen, G., Gao, P., & Wang, L. (2015). Determination of the action modes of cellulases from hydrolytic profiles over a time course using fluorescence-assisted carbohydrate electrophoresis. Electrophoresis, 36(6), 910–917.CrossRefGoogle Scholar
  31. 31.
    Zhang, Y. H. P., & Lynd, L. R. (2003). Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Analytical Biochemistry, 322(2), 225–232.CrossRefGoogle Scholar
  32. 32.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.CrossRefGoogle Scholar
  33. 33.
    Zhang, X., Liu, N., Yang, F., Li, J., Wang, L., Chen, G., & Gao, P. (2012). In situ demonstration and quantitative analysis of the intrinsic properties of glycoside hydrolases. Electrophoresis, 33(2), 280–287.CrossRefGoogle Scholar
  34. 34.
    Pan, D., Hill, A. P., Kashou, A., Wilson, K. A., & Tan-Wilson, A. (2011). Electrophoretic transfer protein zymography. Analytical Biochemistry, 411(2), 277–283.CrossRefGoogle Scholar
  35. 35.
    Jiang, L., He, L., & Fountoulakis, M. (2004). Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. Journal of Chromatography A, 1023(2), 317–320.CrossRefGoogle Scholar
  36. 36.
    Méchin, V., Damerval, C., Zivy, M., Thiellement, H., Zivy, M., Damerval, C., & Méchin, V. (2007). Total protein extraction with TCA-acetone. In H. Thiellement (Ed.), Plant proteomics: methods and protocols (pp. 1–8). Totowa: Humana Press.Google Scholar
  37. 37.
    Zhou, J. Y., Schepmoes, A. A., Zhang, X., Moore, R. J., Monroe, M. E., Lee, J. H., Camp, D. G., Smith, R. D., & Qian, W.-J. (2010). Improved LC−MS/MS spectral counting statistics by recovering low-scoring spectra matched to confidently identified peptide sequences. Journal of Proteome Research, 9(11), 5698–5704.CrossRefGoogle Scholar
  38. 38.
    Li, X. T., Jiang, Z. Q., Li, L. T., Yang, S. Q., Feng, W. Y., Fan, J. Y., & Kusakabe, I. (2005). Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Bioresource Technology, 96(12), 1370–1379.CrossRefGoogle Scholar
  39. 39.
    Singh, S., Pillay, B., Dilsook, V., & Prior, B. A. (2000). Production and properties of hemicellulase by a Thermomyces lanuginosus strain. Journal of Applied Microbiology, 88(6), 975–982.CrossRefGoogle Scholar
  40. 40.
    Munster, J. M., Daly, P., Delmas, S., Pullan, S. T., Blythe, M. J., Malla, S., Kokolski, M., Noltorp, E. C. M., Wennberg, K., Fetherston, R., Beniston, R., Yu, X. L., Dupree, P., & Archer, D. B. (2014). The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genetics and Biology, 72, 34–47.CrossRefGoogle Scholar
  41. 41.
    Guillén, D., Sánchez, S., & Rodriguez-Sanoja, R. (2010). Carbohydrate-binding domains: multiplicity of biological roles. Applied Microbiology and Biotechnology, 85(5), 1241–1249.CrossRefGoogle Scholar
  42. 42.
    Gong, W., Zhang, H., Tian, L., Liu, S., Wu, X., Li, F., & Wang, L. (2016). Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis. Electrophoresis, 37(12), 1640–1650.CrossRefGoogle Scholar
  43. 43.
    Carvalho, A. F. A., Neto, P. d. O., da Silva, D. F., & Pastore, G. M. (2013). Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Research International, 51(1), 75–85.CrossRefGoogle Scholar
  44. 44.
    Wang, W., Mai-Gisondi, G., Stogios, P. J., Kaur, A., Xu, X., Cui, H., Turunen, O., Savchenko, A., & Mastera, E. R. (2014). Elucidation of the molecular basis for arabinoxylan-debranching activity of a thermostable family GH62 L-Arabinofuranosidase from Streptomyces thermoviolaceus. Applied and Environmental Microbiology, 80(17), 5317–5329.CrossRefGoogle Scholar
  45. 45.
    Fukuda, M., Watanabe, S., Yoshida, S., Itoh, H., Itoh, Y., Kamio, Y., & Kaneko, J. (2010). Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. Journal of Bacteriology, 192(8), 2210–2219.CrossRefGoogle Scholar
  46. 46.
    Miyazaki, K., Hirase, T., Kojima, Y., & Flint, H. J. (2005). Medium- to large-sized xylo-oligosaccharides are responsible for xylanase induction in Prevotella bryantii B14. Microbiology, 151(12), 4121–4125.CrossRefGoogle Scholar
  47. 47.
    He, J., Han, G., & Chen, D. (2013). Insights into enzyme secretion by filamentous fungi: comparative proteome analysis of Trichoderma reesei grown on different carbon sources. Journal of Proteomics, 89, 191–201.CrossRefGoogle Scholar
  48. 48.
    Liu, D., Li, J., Zhao, S., Zhang, R., Wang, M., Miao, Y., Shen, Y., & Shen, Q. (2013). Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnology for Biofuels, 6(1), 149–164.CrossRefGoogle Scholar
  49. 49.
    Lu, X., Sun, J., Nimtz, M., Wissing, J., Zeng, A., & Rinas, U. (2010). The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microbial Cell Factories, 9, 13.CrossRefGoogle Scholar
  50. 50.
    Xiong, H., Nyyssölä, A., Jänis, J., Pastinen, O., Weymarn, N., Leisola, M., & Turunen, O. (2004). Characterization of the xylanase produced by submerged cultivation of Thermomyces lanuginosus DSM 10635. Enzyme and Microbial Technology, 35(1), 93–99.CrossRefGoogle Scholar
  51. 51.
    Wu, X., Tian, Z., Jiang, X., Zhang, Q., & Wang, L. (2018). Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids. Applied Microbiology and Biotechnology, 102(1), 249–260.CrossRefGoogle Scholar
  52. 52.
    Wang, Y., Fu, Z., Huang, H., Zhang, H., Yao, B., Xiong, H., & Turunen, O. (2012). Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresource Technology, 112, 275–279.CrossRefGoogle Scholar
  53. 53.
    Damaso, M. C. T., Andrade, C. M. M. C., Pereira, N., Finkelstein, M., & Davison, B. H. (2000). Applied biochemistry and biotechnology. In M. Finkelstein & B. H. Davison (Eds.), Applied biochemistry and biotechnology (pp. 821–834). Totowa: Humana Press.Google Scholar
  54. 54.
    Girhammar, U., & Nair, B. M. (1992). Certain physical properties of water soluble non-starch polysaccharides from wheat, rye, triticale, barley and oats. Food Hydrocolloids, 6(4), 329–343.CrossRefGoogle Scholar
  55. 55.
    Lecerf, J. M., Depeint, F., Clerc, E., Dugenet, Y., Niamba, C. N., Rhazi, L., Cayzeele, A., Abdelnour, G., Jaruga, A., Younes, H., Jacobs, H., Lambrey, G., Abdelnour, A. M., & Pouillart, P. R. (2012). Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. The British Journal of Nutrition, 108(10), 1847–1858.CrossRefGoogle Scholar
  56. 56.
    Gong, W., Dai, L., Zhang, H., Zhang, L., & Wang, L. (2018). A highly efficient xylan-utilization system in Aspergillus niger An76: a functional-proteomics study. Frontiers in Microbiology, 9, 430.CrossRefGoogle Scholar
  57. 57.
    Mariotti, M., Pagani, M. A., & Lucisano, M. (2013). The role of buckwheat and HPMC on the bread making properties of some commercial gluten-free bread mixtures. Food Hydrocolloids, 30(1), 393–400.CrossRefGoogle Scholar
  58. 58.
    Yuan, Q. P., Zhang, H., Qian, Z. M., & Yang, X. J. (2004). Pilot-plant production of xylo-oligosaccharides from corncob by steaming, enzymatic hydrolysis and nanofiltration. Journal of Chemical Technology & Biotechnology, 79(10), 1073–1079.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The State Key Laboratory of Microbial TechnologyShandong UniversityJinanPeople’s Republic of China
  2. 2.Biology InstituteQilu University of Technology (Shandong Academy of Sciences)JinanChina
  3. 3.College of Marine ScienceShandong UniversityWeihaiChina

Personalised recommendations