Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1220–1237 | Cite as

Investigation on the Cultivation Conditions of a Newly Isolated Fusarium Fungal Strain for Enhanced Lipid Production

  • Yan Yang
  • Bo HuEmail author
Article

Abstract

Fusarium equiseti UMN-1 fungal strain isolated from soybean is selected as a potential oleaginous fungal strain for biodiesel generation. It possesses desirable features, such as high lipid content (up to 56%) and high fatty acid methyl ester (FAME) content (more than 98%) in total lipids, and also has the capability to produce cellulase. This research focused on the investigation of the characteristics of this strain and optimization of culture conditions to enhance lipid production. Impact of temperature, agitation, C/N ratio, medium composition, and carbon and nitrogen sources has been observed, and central composite design (CCD) has been applied to improve the lipid accumulation. The optimum range for temperature, agitation, C/N ratio, and carbon and nitrogen concentrations was discovered, and the CCD model with the optimized growth medium and growth conditions achieved a maximum lipid production of 3.89 g/L. This research on F. equiseti UMN-1 fungal strain is expected to improve the feasibility of using microbial lipids of F. equiseti UMN-1 strains as the source of biofuels.

Keywords

Oleaginous fungi Fusarium Microbial lipid accumulation Endophytic fungi Soybean 

Notes

Funding Information

This research was supported by the Grand-in-Aid program at the University of Minnesota.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Durrett, T. P., Benning, C., & Ohlrogge, J. (2008). Plant triacylglycerols as feedstocks for the production of biofuels. Plant Journal, 54(4), 593–607.Google Scholar
  2. 2.
    Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97(6), 841–846.Google Scholar
  3. 3.
    Wynn, J. P., Ratledge, C., Hamid, A. A., & Li, Y. (2001). Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology, 147(10), 2857–2864.Google Scholar
  4. 4.
    Li, Q., Du, W., & Liu, D. (2008). Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80(5), 749–756.Google Scholar
  5. 5.
    Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, Á. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1), 261–268.Google Scholar
  6. 6.
    Jin, M. J., et al. (2015). Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends in Biotechnology, 33(1), 43–54.Google Scholar
  7. 7.
    Yang, Y., Yan, M., & Hu, B. (2014). Endophytic fungal strains of soybean for lipid production. Bioenergy Research, 7(1), 353–361.Google Scholar
  8. 8.
    Amanullah, A., Christensen, L. H., Hansen, K., Nienow, A. W., & Thomas, C. R. (2002). Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnology and Bioengineering, 77(7), 815–826.Google Scholar
  9. 9.
    Santamauro, F., Whiffin, F. M., Scott, R. J., & Chuck, C. J. (2014). Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnology for Biofuels, 7(1), 34.Google Scholar
  10. 10.
    Jang, H. D., Lin, Y. Y., & Yang, S. S. (2005). Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Bioresource Technology, 96(15), 1633–1644.Google Scholar
  11. 11.
    Angerbauer, C., Siebenhofer, M., Mittelbach, M., & Guebitz, G. M. (2008). Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology, 99(8), 3051–3056.Google Scholar
  12. 12.
    Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos, A., & Aggelis, G. (2009). Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass & Bioenergy, 33(4), 573–580.Google Scholar
  13. 13.
    Huang, C., Zong, M. H., Wu, H., & Liu, Q. P. (2009). Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100(19), 4535–4538.Google Scholar
  14. 14.
    Chen, X., Li, Z., Zhang, X., Hu, F., Ryu, D. D. Y., & Bao, J. (2009). Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Applied Biochemistry and Biotechnology, 159(3), 591–604.Google Scholar
  15. 15.
    Ratledge, C. (2002). Regulation of lipid accumulation in oleaginous micro-organisms. Biochemical Society Transactions, 30(Pt 6), 1047–1050.Google Scholar
  16. 16.
    Sharma, A., Rawat, U. S., & Yadav, B. K. (2012). Influence of phosphorus levels and phosphorus solubilizing fungi on yield and nutrient uptake by wheat under sub-humid region of Rajasthan, India. ISRN Agronomy, 2012, 9.Google Scholar
  17. 17.
    Carapito, R., Hatsch, D., Vorwerk, S., Petkovski, E., Jeltsch, J. M., & Phalip, V. (2008). Gene expression in Fusarium graminearum grown on plant cell wall. Fungal Genetics and Biology, 45(5), 738–748.Google Scholar
  18. 18.
    Indarti, E., Majid, M. I. A., Hashim, R., & Chong, A. (2005). Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. Journal of Food Composition and Analysis, 18(2–3), 161–170.Google Scholar
  19. 19.
    Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.Google Scholar
  20. 20.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.Google Scholar
  21. 21.
    Farooq, S.. 2005. Physiological studies of Fusarium oxysporum f. sp. ciceri. International Journal of Agriculture and Biology.Google Scholar
  22. 22.
    Suutari, M., Liukkonen, K., & Laakso, S. (1990). Temperature adaptation in yeasts: the role of fatty acids. Journal of General Microbiology, 136(8), 1469–1474.Google Scholar
  23. 23.
    Gounot, A. M. (1991). Bacterial life at low temperature: physiological aspects and biotechnological implications. The Journal of Applied Bacteriology, 71(5), 386–397.Google Scholar
  24. 24.
    Beales, N. (2004). Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Comprehensive Reviews in Food Science and Food Safety, 3(1), 1–20.Google Scholar
  25. 25.
    Weinstein, R. N., Montiel, P. O., & Johnstone, K. (2000). Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia, 92(2), 222–229.Google Scholar
  26. 26.
    Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., & Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90(4), 1219–1227.Google Scholar
  27. 27.
    Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113(8), 1031–1051.Google Scholar
  28. 28.
    Li, Y., Wadso, L., & Larsson, L. (2009). Impact of temperature on growth and metabolic efficiency of Penicillium roqueforti—correlations between produced heat, ergosterol content and biomass. Journal of Applied Microbiology, 106(5), 1494–1501.Google Scholar
  29. 29.
    Ensari, S., & Lim, H. C. (2003). Apparent effects of operational variables on the continuous culture of Corynebacterium lactofermentum. Process Biochemistry, 38, 1531–1538.Google Scholar
  30. 30.
    Yang, F. C., & Lin, I. H. (1998). Production of acid protease using thin stillage from a rice-spirit distillery by Aspergillus niger. Enzyme and Microbial Technology, 23(6), 397–402.Google Scholar
  31. 31.
    Rossi, R., Pastorelli, G., Cannata, S., & Corino, C. (2010). Recent advances in the use of fatty acids as supplements in pig diets: a review. Animal Feed Science and Technology, 162(1–2), 1–11.Google Scholar
  32. 32.
    Somashekar, D., Venkateshwaran, G., Sambaiah, K., & Lokesh, B. R. (2003). Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Process Biochemistry, 38(12), 1719–1724.Google Scholar
  33. 33.
    Niranjane, A. P., Madhou, P., & Stevenson, T. W. (2007). The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantea. Enzyme and Microbial Technology, 40(6), 1464–1468.Google Scholar
  34. 34.
    Chen, H.-C., & Chang, C.-C. (1996). Production of γ-linolenic acid by the fungus Cunninghamella echinulata CCRC 31840. Biotechnology Progress, 12(3), 338–341.Google Scholar
  35. 35.
    Martin, C. E., Oh, C. S., & Jiang, Y. (2007). Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochimica et Biophysica Acta, 1771(3), 271–285.Google Scholar
  36. 36.
    Mansilla, M. C., & de Mendoza, D. (2005). The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Archives of Microbiology, 183(4), 229–235.Google Scholar
  37. 37.
    Wiebe, M. G., Koivuranta, K., Penttilä, M., & Ruohonen, L. (2012). Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnology, 12(1), 26.Google Scholar
  38. 38.
    Ruan, Z., Zanotti, M., Wang, X., Ducey, C., & Liu, Y. (2012). Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresource Technology, 110, 198–205.Google Scholar
  39. 39.
    Hu, C., Wu, S., Wang, Q., Jin, G., Shen, H., & Zhao, Z. K. (2011). Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnology for Biofuels, 4(1), 25.Google Scholar
  40. 40.
    Zhu, L. Y., Zong, M. H., & Wu, H. (2008). Efficient lipid production with Trichosporonfermentans and its use for biodiesel preparation. Bioresource Technology, 99(16), 7881–7885.Google Scholar
  41. 41.
    Aggelis, G., & Komaitis, M. (1999). Enhancement of single cell oil production by Yarrowia lipolytica growing in the presence of Teucrium polium L. aqueous extract. Biotechnology Letters, 21(9), 747–749.Google Scholar
  42. 42.
    Li, Y., Zhao, Z., & Bai, F. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41(3), 312–317.Google Scholar
  43. 43.
    Zhang, J., Fang, X., Zhu, X. L., Li, Y., Xu, H. P., Zhao, B. F., Chen, L., & Zhang, X. D. (2011). Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass and Bioenergy, 35(5), 1906–1911.Google Scholar
  44. 44.
    Vicente, G., Bautista, L. F., Rodríguez, R., Gutiérrez, F. J., Sádaba, I., Ruiz-Vázquez, R. M., Torres-Martínez, S., & Garre, V. (2009). Biodiesel production from biomass of an oleaginous fungus. Biochemical Engineering Journal, 48(1), 22–27.Google Scholar
  45. 45.
    Papanikolaou, S., Komaitis, M., & Aggelis, G. (2004). Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresource Technology, 95(3), 287–291.Google Scholar
  46. 46.
    Chunjie Xia, J. Z., Zhang, W., & Hu, B. (2011). A new cultivation method for bioenergy production—cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnology for Biofuels, 4, 15.Google Scholar
  47. 47.
    Zhang, J. G., & Hu, B. (2012). Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull. Applied Biochemistry and Biotechnology, 166(4), 1034–1046.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaSaint PaulUSA

Personalised recommendations