Advertisement

Long-Term Monokaryotic Cultures of Pleurotus ostreatus var. florida Produce High and Stable Laccase Activity Capable to Degrade ß-Carotene

  • Diana Linke
  • Alejandra B. Omarini
  • Meike Takenberg
  • Sebastian Kelle
  • Ralf G. Berger
Article
  • 54 Downloads

Abstract

An extracellular laccase (Lacc10) was discovered in submerged cultures of Pleurotus ostreatus var. florida bleaching ß-carotene effectively without the addition of a mediator (650 mU/L, pH 4). Heterologous expression in P. pastoris confirmed the activity and structural analyses revealed a carotenoid-binding domain, which formed the substrate-binding pocket and is reported here for the first time. In order to increase activity, 106 basidiospore-derived monokaryons and crosses of compatible progenies were generated. These showed high intraspecific variability in growth rate and enzyme formation. Seventy-two homokaryons exhibited a higher activity-to-growth-rate-relation than the parental dikaryon, and one isolate produced a very high activity (1800 mU/L), while most of the dikaryotic hybrids showed lower activity. The analysis of the laccase gene of the monokaryons revealed two sequences differing in three amino acids, but the primary sequences gave no clue for the diversity of activity. The enzyme production in submerged cultures of monokaryons was stable over seven sub-cultivation cycles.

Keywords

Basidiomycota Dikaryons Monokaryons Hybrids Destaining Carotenoids Carotenoid-binding domain 

Notes

Acknowledgements

We thank the Institute of Technical Chemistry (Leibniz University Hannover) for the measurements of qPCR raw data and Ulrich Krings for contributing the ab initio peptide sequence.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Scheibner, M., Hülsdau, B., Zelena, K., Nimtz, M., de Boer, L., Berger, R. G., & Zorn, H. (2008). Novel peroxidases of Marasmius scorodonius degrade β-carotene. Applied Microbiology and Biotechnology, 77(6), 1241–1250.CrossRefPubMedGoogle Scholar
  2. 2.
    Zelena, K., Krings, U., & Berger, R. G. (2012). Functional expression of a valencene dioxygenase from Pleurotus sapidus in E. coli. Bioresource Technology, 108, 231–239.CrossRefPubMedGoogle Scholar
  3. 3.
    Leonhardt, R.-H., Krings, U., Berger, R. G., & Linke, D. (2016). Heterologous production of the stain solving peptidase PPP1 from Pleurotus pulmonarius. Bioprocess and Biosystems Engineering, 39(5), 845–853.CrossRefPubMedGoogle Scholar
  4. 4.
    Eichlerová, I., & Homolka, L. (1999). Preparation and crossing of basidiospore-derived monokaryons - a useful tool for obtaining laccase and other ligninolytic enzyme higher-producing dikaryotic strains of Pleurotus ostreatus. Antonie Leeuwenhoek, 75(4), 321–327.CrossRefPubMedGoogle Scholar
  5. 5.
    Omarini, A. B., Plagemann, I., Schimanski, S., Krings, U., & Berger, R. G. (2014). Crosses between monokaryons of Pleurotus sapidus or Pleurotus florida show an improved biotransformation of (+)-valencene to (+)-nootkatone. Bioresource Technology, 171, 113–119.CrossRefPubMedGoogle Scholar
  6. 6.
    Hiscox, J., Hibbert, C., Rogers, H. J., & Boddy, L. (2010). Monokaryons and dikaryons of Trametes versicolor have similar combative, enzyme and decay ability. Fungal Ecology, 3(4), 347–356.CrossRefGoogle Scholar
  7. 7.
    Ellingboe, A. H. (1993). In S.-T. Chang, J. A. Buswell, & P. G. Miles (Eds.), Genetics and breeding of edible mushrooms: Breeding for mushroom production in Lentinula edodes (pp. 111–123). Philadelphia: Gordan and Breach.Google Scholar
  8. 8.
    Ramirez, L., Larraya, L. M., & Pisabarro, A. (2000). Molecular tools for breeding basidiomycetes. International Microbiology, 3(3), 147–152.PubMedGoogle Scholar
  9. 9.
    Nikzad Gharehaghaji, A., Goltapeh, E., Masiha, S., & Gordan, H. R. (2007). Hybrid production of oyster mushroom Pleurotus ostreatus (Jacq: Fries) Kummer. Pakistan Journal of Biological Sciences, 10, 2334–2340.CrossRefPubMedGoogle Scholar
  10. 10.
    Rosnina, A. G., Tan, Y. S., Abdullah, N., & Vikineswary, S. (2016). Morphological and molecular characterization of yellow oyster mushroom, Pleurotus citrinopileatus, hybrids obtained by interspecies mating. World Journal of Microbiology and Biotechnology, 32(2), 18.CrossRefPubMedGoogle Scholar
  11. 11.
    Castanera, R., Omarini, A., Santoyo, F., Pérez, G., Pisabarro, A. G., & Ramírez, L. (2013). Non-additive transcriptional profiles underlie dikaryotic superiority in Pleurotus ostreatus laccase activity. PLoS One, 8(9), e73282.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mate, D. M., & Alcalde, M. (2016). Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 10(6), 1457–1467.  https://doi.org/10.1111/1751-7915.12422.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Singh Arora, D., & Kumar Sharma, R. (2010). Ligninolytic fungal laccases and their biotechnological applications. Applied Biochemistry and Biotechnology, 160(6), 1760–1788.CrossRefPubMedGoogle Scholar
  14. 14.
    Margot, J., Bennati-Granier, C., Maillard, J., Blánquez, P., Barry, D. A., & Holliger, C. (2013). Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express, 3(1), 63.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xu, F. (2005). Applications of oxidoreductases: Recent progress. Industrial Biotechnology, 1(1), 38–50.CrossRefGoogle Scholar
  16. 16.
    Rodríguez, E., Pickard, M. A., & Vazquez-Duhalt, R. (1999). Industrial dye decolorization by laccases from ligninolytic fungi. Current Microbiology, 38(1), 27–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Janssen, G. G., Baldwin, T. M., Winetzky, D. S., Tierney, L. M., Wang, H., & Murray, C. J. (2004). Selective targeting of a laccase from Stachybotrys chartarum covalently linked to a carotenoid-binding peptide. The Journal of Peptide Research, 64(1), 10–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Behrens, C. J., Linke, D., Allister, A. B., Zelena, K., & Berger, R. G. (2017). Variants of PpuLcc, a multi-dye decolorizing laccase from Pleurotus pulmonarius expressed in Pichia pastoris. Protein Expression and Purification, 137, 34–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Linke, D., Matthes, R., Nimtz, M., Zorn, H., Bunzel, M., & Berger, R. G. (2013). An esterase from the basidiomycete Pleurotus sapidus hydrolyzes feruloylated saccharides. Applied Microbiology and Biotechnology, 97(16), 7241–7251.CrossRefPubMedGoogle Scholar
  20. 20.
    Linke, D., Leonhardt, R., Eisele, N., Petersen, L. M., Riemer, S., Nimtz, M., & Berger, R. G. (2015). Carotene-degrading activities from Bjerkandera adusta possess an application in detergent industries. Bioprocess and Biosystems Engineering, 38(6), 1191–1199.CrossRefPubMedGoogle Scholar
  21. 21.
    Bareth, A., Strohmar, W., & Kitzelmann, E. (2002). HPLC and spectrophotometric determination of annatto in cheese. European Food Research and Technology, 215(4), 359–364.CrossRefGoogle Scholar
  22. 22.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.PubMedGoogle Scholar
  23. 23.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.CrossRefPubMedGoogle Scholar
  24. 24.
    Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786.CrossRefPubMedGoogle Scholar
  26. 26.
    Lin-Cereghino, J., Wong, W. W., Xiong, S., Giang, W., Luong, L. T., Vu, J., Johnson, S. D., & Lin-Cereghino, G. P. (2005). Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. BioTechniques, 38(1), 44–48.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kelle, S., Zelena, K., Krings, U., Linke, D., & Berger, R. G. (2014). Expression of soluble recombinant lipoxygenase from Pleurotus sapidus in Pichia pastoris. Protein Expression and Purification, 95, 233–239.CrossRefPubMedGoogle Scholar
  28. 28.
    Fan, F., Zhuo, R., Sun, S., Wan, X., Jiang, M., Zhang, X., & Yang, Y. (2011). Cloning and functional analysis of a new laccase gene from Trametes sp. 48424 which had the high yield of laccase and strong ability for decolorizing different dyes. Bioresource Technology, 102(3), 3126–3137.CrossRefPubMedGoogle Scholar
  29. 29.
    Nieter, A., Kelle, S., Takenberg, M., Linke, D., Bunzel, M., Popper, L., & Berger, R. G. (2016). Heterologous production and characterization of a chlorogenic acid esterase from Ustilago maydis with a potential use in baking. Food Chemistry, 209, 1–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Bühligen, F., Rüdinger, P., Fetzer, I., Stahl, F., Scheper, T., Harms, H., & Müller, S. (2013). Sustainability of industrial yeast serial repitching practice studied by gene expression and correlation analysis. Journal of Biotechnology, 168(4), 718–728.CrossRefPubMedGoogle Scholar
  31. 31.
    Hyde, K. D., Bahkali, A. H., & Moslem, M. A. (2010). Fungi—an unusual source for cosmetics. Fungal Diversity, 43(1), 1–9.CrossRefGoogle Scholar
  32. 32.
    Buyck, B., Kauff, F., Eyssartier, G., Couloux, A., & Hofstetter, V. (2014). A multilocus phylogeny for worldwide Cantharellus (Cantharellales, Agaricomycetidae). Fungal Diversity, 64(1), 101–121.CrossRefGoogle Scholar
  33. 33.
    Giardina, P., Aurilia, V., Cannio, R., Marzullo, L., Amoresano, A., Siciliano, R., Pucci, P., & Sannia, G. (1996). The gene, protein and glycan structures of laccase from Pleurotus ostreatus. European Journal of Biochemistry, 235(3), 508–515.CrossRefPubMedGoogle Scholar
  34. 34.
    Park, M., Kim, M., Kim, S., Ha, B., & Ro, H.-S. (2015). Differential expression of laccase genes in Pleurotus ostreatus and biochemical characterization of laccase isozymes produced in Pichia pastoris. Mycobiology, 43(3), 280–287.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Castanera, R., Pérez, G., Omarini, A., Alfaro, M., Pisabarro, A. G., Faraco, V., Amore, A., & Ramírez, L. (2012). Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures. Applied and Environmental Microbiology, 78(11), 4037–4045.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rodríguez Couto, S., & Toca Herrera, J. L. (2006). Industrial and biotechnological applications of laccases: a review. Biotechnology Advances, 24(5), 500–513.CrossRefPubMedGoogle Scholar
  37. 37.
    Legerská, B., Chmelová, D., & Ondrejovič, M. (2016). Degradation of synthetic dyes by laccases – a mini-review. Nova Biotechnologica et Chimica, 15(1), 90–106.CrossRefGoogle Scholar
  38. 38.
    Senthivelan, T., Kanagaraj, J., & Panda, R. C. (2016). Recent trends in fungal laccase for various industrial applications: an eco-friendly approach - a review. Bioprocess and Biosystems Engineering, 21(1), 19–38.CrossRefGoogle Scholar
  39. 39.
    Beicht, J., Zeeb, B., Gibis, M., Fischer, L., & Weiss, J. (2013). Influence of layer thickness and composition of cross-linked multilayered oil-in-water emulsions on the release behavior of lutein. Food & Function, 4(10), 1457–1467.CrossRefGoogle Scholar
  40. 40.
    Gélinas, P., Poitras, E., McKinnon, C. M., & Morin, A. (1998). Oxidoreductases and lipases as dough-bleaching agents. Cereal Chem Journal, 75(6), 810–814.CrossRefGoogle Scholar
  41. 41.
    Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, W252–W258.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Palmeiri, G., Giardina, P., Marzullo, L., Desiderio, B., Nittii, G., Cannio, R., & Sannia, G. (1993). Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus. Applied Microbiology and Biotechnology, 39(4), 632–636.CrossRefGoogle Scholar
  43. 43.
    Rottava, I., Cortina, P. F., Grando, C. E., Colla, A. R. S., Martello, E., Cansian, R. L., Toniazzo, G., Treichel, H., Antunes, A. O. C., Oestreicher, E. G., & de Oliveira, D. (2010). Isolation and screening of microorganisms for R-(+)-limonene and (-)-beta-pinene biotranformation. Applied Biochemistry and Biotechnology, 162(3), 719–732.CrossRefPubMedGoogle Scholar
  44. 44.
    del Vecchio, C., Lettera, V., Pezzella, C., Piscitelli, A., Leo, G., Birolo, L., & Sannia, G. (2012). Classical breeding in Pleurotus ostreatus: a natural approach for laccase production improvement. Biocatalysis and Biotransformation, 30(1), 78–85.CrossRefGoogle Scholar
  45. 45.
    Elbashir, S. M., Harborth, J., Weber, K., & Tuschl, T. (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 26(2), 199–213.CrossRefPubMedGoogle Scholar
  46. 46.
    Clark, T. A., & Anderson, J. B. (2004). Dikaryons of the basidiomycete fungus Schizophyllum commune: evolution in long-term culture. Genetics, 167(4), 1663–1675.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Leonard, T. J., Dick, S., & Gaber, R. F. (1978). Internuclear genetic transfer in vegetative dikaryons of Schizophyllum commune I. Di-mon mating analysis. Genetics, 88(1), 13–26.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Diana Linke
    • 1
  • Alejandra B. Omarini
    • 2
    • 3
  • Meike Takenberg
    • 1
  • Sebastian Kelle
    • 1
  • Ralf G. Berger
    • 1
  1. 1.Institut für LebensmittelchemieLeibniz Universität HannoverHannoverGermany
  2. 2.Downstream Bioprocessing LabJacobs University Bremen gGmbHBremenGermany
  3. 3.INCITAP (CONICET-UNLPam) Consejo Nacional de Investigaciones Científicas y TécnicasUniversidad Nacional de La PampaSanta RosaArgentina

Personalised recommendations