Chloro-Modified Magnetic Fe3O4@MCM-41 Core–Shell Nanoparticles for L-Asparaginase Immobilization with Improved Catalytic Activity, Reusability, and Storage Stability

  • Ahmet Ulu
  • Samir Abbas Ali Noma
  • Suleyman Koytepe
  • Burhan AtesEmail author


This paper describes a new support that permits to efficient immobilization of L-asparaginase (L-ASNase). For this purpose, Fe3O4 magnetic nanoparticles were synthesized and coated by MCM-41. 3-chloropropyltrimethoxysilane (CPTMS) was used as a surface modifying agent for covalent immobilization of L-ASNase on the magnetic nanoparticles. The chemical structure; thermal, morphological, and magnetic properties; chemical composition; and zeta potential value of Fe3O4@MCM-41-Cl were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction patterns (XRD), and zeta-potential measurement. The immobilization efficiency onto Fe3O4@MCM-41-Cl was detected as 63%. The reusability, storage, pH, and thermal stabilities of the immobilized L-ASNase were investigated and compared to that of soluble one. The immobilized enzyme maintained 42.2% of its original activity after 18 cycles of reuse. Furthermore, it was more stable towards pH and temperature compared with soluble enzyme. The Michaelis–Menten kinetic properties of immobilized L-ASNase showed a lower Vmax and a similar Km compared to soluble L-ASNase. Immobilized enzyme had around 47 and 32.5% residual activity upon storage a period of 28 days at 4 and 25 °C, respectively. In conclusion, the Fe3O4@MCM-41-Cl@L-ASNase core–shell nanoparticles could successfully be used in industrial and medical applications.


Fe3O4@MCM-41 Core–shell magnetic particles Chloro group L-asparaginase Enzyme immobilization 



This study was partially supported by from Inönü University (FDK-2017-751).

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ali, Z., Tian, L., Zhang, B., Ali, N., Khan, M., & Zhang, Q. (2017). Synthesis of paramagnetic dendritic silica nanomaterials with fibrous pore structure (Fe3O4@KCC-1) and their application in immobilization of lipase from Candida rugosa with enhanced catalytic activity and stability. New Journal Chemistry, 41(16), 8222–8231.CrossRefGoogle Scholar
  2. 2.
    Zhou, Z., & Hartmann, M. (2013). Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chemical Society Reviews, 42(9), 3894–3912.CrossRefPubMedGoogle Scholar
  3. 3.
    Na, W., Wei, Q., Lan, J. N., Nie, Z. R., Sun, H., & Li, Q. Y. (2010). Effective immobilization of enzyme in glycidoxypropyl-functionalized periodic mesoporous organosilicas (PMOs). Microporous and Mesoporous Materials, 134(1–3), 72–78.CrossRefGoogle Scholar
  4. 4.
    Shikha, S., Thakur, K. G., & Bhattacharyya, M. S. (2017). Facile fabrication of lipase to amine functionalized gold nanoparticles to enhance stability and activity. RSC Advances, 7(68), 42845–42855.CrossRefGoogle Scholar
  5. 5.
    González-Delgado, I., Segura, Y., Martín, A., López-Muñoz, M. J., & Morales, G. (2018). β-Galactosidase covalent immobilization over large-pore mesoporous silica supports for the production of high galacto-oligosaccharides (GOS). Microporous and Mesoporous Materials, 257, 51–61.CrossRefGoogle Scholar
  6. 6.
    Aragão Börner, R., Zaushitsyna, O., Berillo, D., Scaccia, N., Mattiasson, B., & Kirsebom, H. (2014). Immobilization of Clostridium acetobutylicum DSM 792 as macroporous aggregates through cryogelation for butanol production. Process Biochemistry, 49(1), 10–18.CrossRefGoogle Scholar
  7. 7.
    Ma, J., Zhang, L., Liang, Z., Zhang, W., & Zhang, Y. (2009). Recent advances in immobilized enzymatic reactors and their applications in proteome analysis. Analytica Chimica Acta, 632(1), 1–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Kim, J., Grate, J. W., & Wang, P. (2006). Nanostructures for enzyme stabilization. Chemical Engineering Science, 61(3), 1017–1026.CrossRefGoogle Scholar
  9. 9.
    Fu, X., Chen, X., Wang, J., & Liu, J. (2011). Fabrication of carboxylic functionalized superparamagnetic mesoporous silica microspheres and their application for removal basic dye pollutants from water. Microporous and Mesoporous Materials, 139(1–3), 8–15.CrossRefGoogle Scholar
  10. 10.
    Mu, X., Qiao, J., Qi, L., Dong, P., & Ma, H. (2014). Poly(2-vinyl-4,4-dimethylazlactone)-functionalized magnetic nanoparticles as carriers for enzyme immobilization and its application. ACS Applied Materials & Interfaces, 6(23), 21346–21354.CrossRefGoogle Scholar
  11. 11.
    Indira, T. (2010). Magnetic nanoparticles: a review. International Journal of Pharmaceutical, 3(3), 1035–1042.Google Scholar
  12. 12.
    Sanjai, C., Kothan, S., Gonil, P., Saesoo, S., & Sajomsang, W. (2014). Chitosan-triphosphate nanoparticles for encapsulation of super-paramagnetic iron oxide as an MRI contrast agent. Carbohydrate Polymers, 104(1), 231–237.CrossRefPubMedGoogle Scholar
  13. 13.
    Shete, P. B., Patil, R. M., Thorat, N. D., Prasad, A., Ningthoujam, R. S., Ghosh, S. J., & Pawar, S. H. (2014). Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments. Applied Surface Science, 288, 149–157.CrossRefGoogle Scholar
  14. 14.
    Sen, T., Sebastianelli, A., & Bruce, I. J. (2006). Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bioseparations. Journal of the American Chemical Society, 128(22), 7130–7131.CrossRefPubMedGoogle Scholar
  15. 15.
    Lancina, M. G., Shankar, R. K., & Yang, H. (2017). Chitosan nanofibers for transbuccal insulin delivery. Journal of Biomedical Materials Research - Part A, 105(5), 1252–1259.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tang, F., Li, L., & Chen, D. (2012). Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced Materials, 24(12), 1504–1534.CrossRefPubMedGoogle Scholar
  17. 17.
    Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834–10843.CrossRefGoogle Scholar
  18. 18.
    Mortazavi, Y., & Ghoreishi, S. M. (2016). Synthesis of mesoporous silica and modified as a drug delivery system of ıbuprofen. Journal of Nanostructures, 6(61), 86–89.Google Scholar
  19. 19.
    Tran, D. T., Chen, C. L., & Chang, J. S. (2012). Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. Journal of Biotechnology, 158(3), 112–119.CrossRefPubMedGoogle Scholar
  20. 20.
    Shao, Y., Jing, T., Tian, J., & Zheng, Y. (2015). Graphene oxide-based Fe3O4 nanoparticles as a novel scaffold for the immobilization of porcine pancreatic lipase. RSC Advances, 5(126), 103943–103955.CrossRefGoogle Scholar
  21. 21.
    Xie, W., & Zang, X. (2016). Immobilized lipase on core-shell structured Fe3O4-MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard. Food Chemistry, 194, 1283–1292.CrossRefPubMedGoogle Scholar
  22. 22.
    Thangaraj, B., Jia, Z., Dai, L., Liu, D., & Du, W. (2016). Effect of silica coating on Fe3O4 magnetic nanoparticles for lipase immobilization and their application for biodiesel production. Arabian Journal of Chemistry. in press.Google Scholar
  23. 23.
    Sohrabi, N., Rasouli, N., & Torkzadeh, M. (2014). Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles. Chemical Engineering Journal, 240, 426–433.CrossRefGoogle Scholar
  24. 24.
    Lin, J., Lai, Q., Liu, Y., Chen, S., Le, X., & Zhou, X. (2017). Laccase—methacrylyol functionalized magnetic particles: highly immobilized, reusable, and efficacious for methyl red decolourization. International Journal of Biological Macromolecules, 102, 144–152.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang, Y. Q., Tao, M. L., De Shen, W., Zhou, Y. Z., Ding, Y., Ma, Y., & Zhou, W. L. (2004). Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials, 25(17), 3751–3759.CrossRefPubMedGoogle Scholar
  26. 26.
    Sahoo, B., Sahu, S. K., Bhattacharya, D., Dhara, D., & Pramanik, P. (2013). A novel approach for efficient immobilization and stabilization of papain on magnetic gold nanocomposites. Colloids and Surfaces B: Biointerfaces, 101, 280–289.CrossRefPubMedGoogle Scholar
  27. 27.
    Vinoba, M., Bhagiyalakshmi, M., Jeong, S. K., Nam, S. C., & Yoon, Y. (2012). Carbonic anhydrase immobilized on encapsulated magnetic nanoparticles for CO2 sequestration. Chemistry - A European Journal, 18(38), 12028–12034.CrossRefGoogle Scholar
  28. 28.
    Mosafa, L., Moghadam, M., & Shahedi, M. (2013). Papain enzyme supported on magnetic nanoparticles: preparation, characterization and application in the fruit juice clarification. Chinese Journal of Catalysis, 34(10), 1897–1904.CrossRefGoogle Scholar
  29. 29.
    Singh, Y., & Srivastava, S. K. (2012). Screening and characterization of microorganisms capable of producing antineoplastic drug , L-asparaginase. International Journal of Biological & Medical research, 3(1), 2548–2554.Google Scholar
  30. 30.
    Zhang, D. H., Yuwen, L. X., & Peng, L. J. (2013). Parameters affecting the performance of immobilized enzyme. Journal of Chemistry, 2013, Article ID 946248.Google Scholar
  31. 31.
    Cachumba, J. J. M., Antunes, F. A. F., Peres, G. F. D., Brumano, L. P., Dos Santos, J. C., & Da Silva, S. S. (2016). Current applications and different approaches for microbial L-asparaginase production. Brazilian Journal of Microbiology., 47, 77–85.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Agrawal, N. R., Bukowski, R. M., Rybicki, L. A., Kurtzberg, J., Cohen, L. J., & Hussein, M. A. (2003). A phase I-II trial of polyethylene glycol-conjugated L-asparaginase in patients with multiple myeloma. Cancer, 98(1), 94–99.CrossRefPubMedGoogle Scholar
  33. 33.
    Ulu, A., & Ates, B. (2017). Immobilization of L-Asparaginase on carrier materials: a comprehensive review. Bioconjugate Chemistry, 28(6), 1598–1610.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang, W., Xu, Y., Wang, D. I. C., & Li, Z. (2009). Recyclable nanobiocatalyst for enantioselective sulfoxidation: facile fabrication and high performance of chloroperoxidase-coated magnetic nanoparticles with iron oxide core and polymer shell. Journal of the American Chemical Society, 131(36), 12892–12893.CrossRefPubMedGoogle Scholar
  35. 35.
    Yu, C. C., Kuo, Y. Y., Liang, C. F., Chien, W. T., Wu, H. T., Chang, T. C., Jan, F. D., & Lin, C. C. (2012). Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Bioconjugate Chemistry, 23(4), 714–724.CrossRefPubMedGoogle Scholar
  36. 36.
    Lin, M., Lu, D., Zhu, J., Yang, C., Zhang, Y., & Liu, Z. (2012). Magnetic enzyme nanogel (MENG): a universal synthetic route for biocatalysts. Chemical Communications, 48(27), 3315–3317.CrossRefPubMedGoogle Scholar
  37. 37.
    Yong, Y., Su, R., Liu, X., Xu, W., Zhang, Y., Wang, R., Ouyang, P., Wu, J., Ge, J., & Liu, Z. (2018). Lectin corona enhances enzymatic catalysis on the surface of magnetic nanoparticles. Biochemical Engineering Journal, 129, 26–32.CrossRefGoogle Scholar
  38. 38.
    Teodor, E., Litescu, S. C., Lazar, V., & Somoghi, R. (2009). Hydrogel-magnetic nanoparticles with immobilized l-asparaginase for biomedical applications. Journal of Materials Science: Materials in Medicine, 20(6), 1307–1314.PubMedGoogle Scholar
  39. 39.
    Atacan, K., & Ozacar, M. (2015). Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles. Colloids and Surfaces B: Biointerfaces, 128, 227–236.CrossRefPubMedGoogle Scholar
  40. 40.
    Benvidi, A., Nikmanesh, M., Dehghan Tezerjani, M., Jahanbani, S., Abdollahi, M., Akbari, A., & Rezaeipoor-Anari, A. (2017). A comparative study of various electrochemical sensors for hydrazine detection based on imidazole derivative and different nano-materials of MCM-41, RGO and MWCNTs: Using net analyte signal (NAS) for simultaneous determination of hydrazine and phenol. Journal of Electroanalytical Chemistry, 787, 145–157.CrossRefGoogle Scholar
  41. 41.
    Hajian, R., & Ehsanikhah, A. (2018). Manganese porphyrin immobilized on magnetic MCM-41 nanoparticles as an efficient and reusable catalyst for alkene oxidations with sodium periodate. Chemical Physics Letters, 691, 146–154.CrossRefGoogle Scholar
  42. 42.
    Imada, A., Igarasi, S., Nakahama, K., & Isono, M. (1973). Asparaginase and glutaminase activities of micro-organisms. Journal of General Microbiology, 76(1), 85–99.CrossRefPubMedGoogle Scholar
  43. 43.
    Dias, F. F. G., Ruiz, A. L. T. G., Torre, A. D., & Sato, H. H. (2016). Purification, characterization and antiproliferative activity of L-asparaginase from Aspergillus oryzae CCT 3940 with no glutaminase activity. Asian Pacific Journal of Tropical Biomedicine, 6(9), 785–794.CrossRefGoogle Scholar
  44. 44.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.CrossRefPubMedGoogle Scholar
  45. 45.
    Li, K., Zeng, Z., Xiong, J., Yan, L., Guo, H., Liu, S., Dai, Y., & Chen, T. (2015). Fabrication of mesoporous Fe3O4@SiO2@CTAB-SiO2 magnetic microspheres with a core/shell structure and their efficient adsorption performance for the removal of trace PFOS from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465, 113–123.CrossRefGoogle Scholar
  46. 46.
    Farahi, M., Karami, B., Keshavarz, R., & Khosravian, F. (2017). Nano-Fe3O4 @SiO2-supported boron sulfonic acid as a novel magnetically heterogeneous catalyst for the synthesis of pyrano coumarins. RSC Advances, 7(74), 46644–46650.CrossRefGoogle Scholar
  47. 47.
    Habila, M. A., Alothman, Z. A., El-Toni, A. M., Labis, J. P., & Soylak, M. (2016). Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis. Talanta, 154, 539–547.CrossRefPubMedGoogle Scholar
  48. 48.
    Ghosh, S., Chaganti, S. R., & Prakasham, R. S. (2012). Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme L-asparaginase. Journal of Molecular Catalysis B: Enzymatic, 74(1–2), 132–137.CrossRefGoogle Scholar
  49. 49.
    Bahreini, E., Aghaiypour, K., Abbasalipourkabir, R., & Mokarram, A. R. (2014). Preparation and nanoencapsulation of L-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Research Letters, 9(1), 340–352. Google Scholar
  50. 50.
    Mirzajani, R., Pourreza, N., & Burromandpiroze, J. (2018). Fabrication of magnetic Fe3O4@nSiO2@mSiO2–NH2 core–shell mesoporous nanocomposite and its application for highly efficient ultrasound assisted dispersive μSPE-spectrofluorimetric detection of ofloxaci. Ultrasonics Sonochemistry, 40(Pt A), 101–112.CrossRefPubMedGoogle Scholar
  51. 51.
    Nikoorazm, M., Ghorbani, F., Ghorbani-Choghamarani, A., & Erfani, Z. (2018). Nickel Schiff base complex anchored on Fe3O4@MCM-41 as a novel and reusable magnetic nanocatalyst and its application in the oxidation of sulfides and oxidative coupling of thiols using H2O2. Phosphorus, Sulfur and Silicon and the Related Elements, in press.Google Scholar
  52. 52.
    Li, G., Nandgaonkar, A. G., Lu, K., Krause, W. E., Lucia, L. A., & Wei, Q. (2016). Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy. RSC Advances, 6(47), 41420–41427.CrossRefGoogle Scholar
  53. 53.
    Hermanová, S., Zarevúcká, M., Bouša, D., Pumera, M., & Sofer, Z. (2015). Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale, 7(13), 5852–5858.CrossRefPubMedGoogle Scholar
  54. 54.
    Shojaei, F., Homaei, A., Taherizadeh, M. R., & Kamrani, E. (2017). Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst. International Journal of Food Properties, 20, 1413–1423.Google Scholar
  55. 55.
    Ulu, A., Koytepe, S., & Ates, B. (2016). Synthesis and characterization of PMMA composites activated with starch for immobilization of L-asparaginase. Journal of Applied Polymer Science, 113(19), 43421–43432.Google Scholar
  56. 56.
    Ulu, A., Koytepe, S., & Ates, B. (2016). Synthesis and characterization of biodegradable pHEMA-starch composites for immobilization of L-asparaginase. Polymer Bulletin, 73(7), 1891–1907.CrossRefGoogle Scholar
  57. 57.
    Wu, Q., Xu, Z., Duan, Y., Zhu, Y., Ou, M., & Xu, X. (2017). Immobilization of tyrosinase on polyacrylonitrile beads: biodegradation of phenol from aqueous solution and the relevant cytotoxicity assessment. RSC Advances, 7(45), 28114–28123.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and ArtsInonu UniversityMalatyaTurkey

Personalised recommendations