Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 2, pp 570–582 | Cite as

Enzymatic Degradation of Allergen Peptides from Bovine Casein by a Combination of Streptomyces Aminopeptidases

  • Kun Wan
  • Misugi Uraji
  • Shota Tokai
  • Tadashi HatanakaEmail author
Article

Abstract

Cow’s milk is one of the most common allergenic foods. Cow’s milk allergy is mainly an IgE-mediated hypersensitivity reaction, and the major allergens from cow’s milk have been found to be caseins, β-lactoglobulin, and α-lactalbumin. Several peptides derived from bovine casein are known allergens in cow’s milk. To reduce their allergenicity, these proteins can be degraded by food-grade peptidases. We succeeded in detection of two peptides, VLPVPQK and FFVAPFPEVFGK, from bovine casein-derived allergen peptides by using an ion trap LC-MS apparatus. This study focuses on the synergistic effects of Streptomyces aminopeptidases belonging to the M1, M24, and M28 families on the degradation of the allergen peptides. From these results, we demonstrated that the combination of M1 and M24 aminopeptidases was the most effective for degrading the abovementioned allergenic peptides.

Keywords

Streptomyces Aminopeptidase Allergen peptides 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hefle, S. L., Nordee, J. A., & Taylor, S. L. (1996). Allergenic foods. Critical Reviews in Food Science and Nutrition, 36, S69–S89.CrossRefGoogle Scholar
  2. 2.
    Young, E., Stoneham, M. D., Petruckevitch, A., Barton, J., & Rona, R. (1994). A population study of food intolerance. Lancet, 343(8906), 1127–1130.CrossRefGoogle Scholar
  3. 3.
    Matsuo, H., Yokooji, T., & Taogoshi, T. (2015). Common food allergens and their IgE-binding epitopes. Allergology International, 64(4), 332–343.CrossRefGoogle Scholar
  4. 4.
    Bu, G., Luo, Y., Chen, F., Liu, K., & Zhu, T. (2013). Milk processing as a tool to reduce cow’s milk allergenicity: a mini-review. Dairy Science & Technology, 93(3), 211–213.CrossRefGoogle Scholar
  5. 5.
    Weber, D., Raymond, P., Ben-Rejeb, S., & Lau, B. (2006). Development of a liquid chromatography-tandem mass spectrometry method using capillary liquid chromatography and nanoslectrospray ionization-quadrupole time-of-flight hybrid mass spectrometer for the detection of milk allergens. Journal of Agricultural Food and Chemistry, 8, 1604–1610.CrossRefGoogle Scholar
  6. 6.
    Chen, Q., Zhang, J., Ke, X., Lai, S., Tao, B., Yang, J., Mo, W., & Ren, Y. (2015). Quantification of bovine β-casein allergen in baked foodstuffs based on ultra-performance liquid chromatography with tandem mass spectrometry. Food Additives & Contaminants: Part A, 32(1), 25–34.CrossRefGoogle Scholar
  7. 7.
    Heyman, M. (1999). Evaluation of the impact of food technology on the allergenicity of cow’s milk proteins. Proceedings of the Nutrition Society, 58(03), 587–592.CrossRefGoogle Scholar
  8. 8.
    Ena, J. M., Van Berestejin, E. C. H., Robben, A. J. P. M., & Schmidt, D. G. (1995). Whey protein antigenicity reduction by fungal proteinases and a pepsin/pancreatin combination. Journal of Food Science, 60(1), 104–110.CrossRefGoogle Scholar
  9. 9.
    Wal, J. M. (2001). Structure and function of milk allergens. Allergy, 56(s67), 35–38.CrossRefGoogle Scholar
  10. 10.
    Arima, J., Iwabuchi, M., & Hatanaka, T. (2004). Alteration of leucine aminopeptidase from Streptomyces septatus TH-2 to phenylalanine aminopeptidase by site-directed mutagenesis. Biochemical and Biophysical Research Communications, 317(2), 531–538.CrossRefGoogle Scholar
  11. 11.
    Arima, J., Uesugi, Y., Iwabuchi, M., & Hatanaka, T. (2008). Streptomyces aminopeptidase P: biochemical characterization and insight into the roles of its N-terminal domain. Protein Engineering, Design & Selection, 21, 45–53.CrossRefGoogle Scholar
  12. 12.
    Arima, J., Uesugi, Y., Iwabuchi, M., & Hatanaka, T. (2006). Study on peptide hydrolysis by aminopeptidases from Streptomyces griseus, Streptomyces septatus and Aeromonas proteolytica. Applied Microbiology and Biotechnology, 70(5), 541–547.CrossRefGoogle Scholar
  13. 13.
    Wan, K., Uraji, M., Arima, J., & Hatanaka, T. (2016). Characterization of a novel metallocarboxypeptidase from Streptomyces cinnamoneus TH-2. Bioresources and Bioprocessing, 3(1), 21.CrossRefGoogle Scholar
  14. 14.
    Hatanaka, T., Onaka, H., Arima, J., Uraji, M., Uesugi, Y., Usuki, H., Nishimoto, Y., & Iwabuchi, M. (2008). pTONA5: a hyperexpression vector in streptomycetes. Protein Expression & Purification, 62(2), 244–248.CrossRefGoogle Scholar
  15. 15.
    Gonzales, T., & Robert-Baudouy, J. (1996). Bacterial aminopeptidases: properties and functions. FEMS Microbiology Reviews, 18(4), 319–344.CrossRefGoogle Scholar
  16. 16.
    Byun, T., Kofod, L., & Blinkovsky, A. (2001). Synergistic action of an X-prolyl dipeptidyl aminopeptidase and a non-specific aminopeptidase in protein hydrolysis. Journal of Agricultural Food and Chemistry, 49(4), 2061–2063.CrossRefGoogle Scholar
  17. 17.
    Nandan, A. S., & Nampoothiri, K. M. (2014). Unveiling aminopeptidase P from Streptomyces lavendulae: molecular cloning, expression and biochemical characterization. Enzyme and Microbial Technology, 55, 7–13.CrossRefGoogle Scholar
  18. 18.
    Ring, J., Brockow, K., & Behrendt, H. (2001). Adverse reactions to foods. Journal of Chromatography B, 756(1-2), 3–10.CrossRefGoogle Scholar
  19. 19.
    Brockow, K., & Ring, J. (2009). Food anaphylaxis. Analytical and Bioanalytical Chemistry, 395(1), 17–23.CrossRefGoogle Scholar
  20. 20.
    Urisu, A., Ebisawa, M., Ito, K., Aihara, Y., Ito, S., Mayumi, M., Kohno, Y., & Kondo, N. (2014). Japanese guideline for food allergy 2014. Allergology International, 63(3), 399–419.CrossRefGoogle Scholar
  21. 21.
    Gupta, R. S., Springston, E. E., Warrier, M. R., Smith, B., Kumar, R., Pongracic, J., & Holl, J. L. (2011). The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics, 128(1), e9–e17.CrossRefGoogle Scholar
  22. 22.
    Nwaru, B. I., Hickstein, L., Panesar, S. S., Muraro, A., Werfel, T., Cardona, V., Dubois, A. E. J., Halken, S., Hoffman-Sommergruber, K., Poulsen, L. K., Roberts, G., Van Ree, R., Vleig-Boelstra, B. J., & Sheikh, A. (2014). The epidemiology of food allergy in Europe: a systematic review and meta-analysis. Allergy, 69(1), 62–75.CrossRefGoogle Scholar
  23. 23.
    Chatchatee, P., Jӓrvinen, K. M., Bardina, L., Vila, L., Beyer, K., & Sampson, H. A. (2001a). Identification of IgE and IgG binding epitopes on beta- and kappa-casein in cow’s milk allergic patients. Clinical & Experimental Allergy, 31(8), 1256–1262.CrossRefGoogle Scholar
  24. 24.
    Chatchatee, P., Jӓrvinen, K. M., Bardina, L., Beyer, K., & Sampson, H. A. (2001). Identification of IgE- and IgG-binding epitopes on alpha (s1)-casein: difference in patients with persistent and transient cow’s milk allergy. Journal of Allergy and Clinical Immunology, 107(2), 379–383.CrossRefGoogle Scholar
  25. 25.
    Nishiwaki, T., Yoshimizu, S., Furuta, M., & Hayashi, K. (2002). Debittering of enzymatic hydrolysates using an aminopeptidase from the edible basidomycete Grifola frondosa. Journal of Bioscience and Bioengineering, 93(1), 60–63.CrossRefGoogle Scholar
  26. 26.
    Bumberger, E., & Belitz, H. D. (1993). Bitter taste of enzymic hydrolysates of casein. Zeitschrift für LebensmitteUntersuchung und –Forschung, 197(1), 14–19.CrossRefGoogle Scholar
  27. 27.
    Clegg, K. M., Lim, C. L., & Manson, W. (1974). The structure of a bitter peptide derived from casein by digestion with papain. Journal of Dairy Research, 41(02), 283–287.CrossRefGoogle Scholar
  28. 28.
    Matoba, T., & Hata, T. (1972). Relationship between bitterness of peptides and their chemical structures. Agricultural and Biological Chemistry, 37, 1423–1431.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Okayama Prefectural Technology Center for Agriculture, Forestry, and FisheriesResearch Institute for Biological Sciences (RIBS)OkayamaJapan
  2. 2.Department of Food Science, College of Animal ScienceSouthwest University, Rongchang CampusChongqingChina

Personalised recommendations