Laccases from Marine Organisms and Their Applications in the Biodegradation of Toxic and Environmental Pollutants: a Review
- 217 Downloads
Abstract
The discharge of industrial effluent creates environmental problems around the world and so necessitates the need for the economically expensive and sometimes technically problematic treatment of the wastewater. Laccases have enormous potential for the oxidative bioremediation of toxic xenobiotic compounds using only molecular oxygen as the sole cofactor for their reaction, and their application is regarded as environmentally friendly. Due to the low substrate specificity of laccases, they can oxidize a variety of substrates. Moreover, by using appropriate mediators, laccases can degrade a wide range of substrates, including those with structural complexity. Thus, laccases are an attractive alternative for wastewater treatment. Marine environments are rich in microorganisms that are exposed to extreme conditions, such as salinity, temperature, and pressure. Laccases from these microorganisms potentially have suitable properties that might be adaptive to bioremediation processes. This review provides the latest information on laccases from marine environments, their sources, biochemical properties, media composition for laccase production, and their applications in the bioremediation of industrial waste, especially focusing on dye decolorization.
Keywords
Laccase Bioremediation Xenobiotic compounds Marine environment Dye decolorizationNotes
Acknowledgements
We gratefully acknowledge Chulalongkorn University for financial support.
Compliance with Ethical Standards
Conflict of Interest
All authors declare that they have no conflict of interest.
References
- 1.Solomon, E. I., Sundaram, U. M., & Machonkin, T. E. (1996). Multicopper oxidases and oxygenases. Chemical Reviews, 96(7), 2563–2606.Google Scholar
- 2.Brijwani, K., Rigdon, A., & Vadlani, P. V. (2010). Fungal laccases: Production, function, and applications in food processing. Enzyme Research. Research article. https://doi.org/10.4061/2010/149748.
- 3.Baldrian, P. (2006). Fungal laccases—occurrence and properties. FEMS Microbiology Reviews, 30(2), 215–242. https://doi.org/10.1111/j.1574-4976.2005.00010.x.Google Scholar
- 4.Riva, S. (2006). Laccases: Blue enzymes for green chemistry. Trends in Biotechnology, 24(5), 219–226. https://doi.org/10.1016/j.tibtech.2006.03.006.Google Scholar
- 5.Zeng, S., Qin, X., & Xia, L. (2017). Degradation of the herbicide isoproturon by laccase-mediator systems. Biochemical Engineering Journal, 119, 92–100. https://doi.org/10.1016/j.bej.2016.12.016.Google Scholar
- 6.Bonugli-santos, R. C., Durrant, L. R., & Sette, L. D. (2010). Laccase activity and putative laccase genes in marine-derived basidiomycetes. Fungal Biology, 114(10), 863–872. https://doi.org/10.1016/j.funbio.2010.08.003.Google Scholar
- 7.Theerachat, M., Emond, S., Cambon, E., Bordes, F., Marty, A., Nicaud, J.-M., Chulalaksananukul, W., Guieysse, D., Remaud-Siméon, M., & Morel, S. (2012). Engineering and production of laccase from Trametes versicolor in the yeast Yarrowia lipolytica. Bioresource Technology, 125, 267–274. https://doi.org/10.1016/j.biortech.2012.07.117.Google Scholar
- 8.Theerachat, M., Tanapong, P., & Chulalaksananukul, W. (2017). The culture or co-culture of Candida rugosa and Yarrowia lipolytica strain rM-4A, or incubation with their crude extracellular lipase and laccase preparations, for the biodegradation of palm oil mill wastewater. International Biodeterioration & Biodegradation, 121, 11–18. https://doi.org/10.1016/j.ibiod.2017.03.002.Google Scholar
- 9.Saravanakumar, K., & Kathiresan, K. (2014). Bioremoval of the synthetic dye malachite green by marine Trichoderma sp. SpringerPlus, 3(631). Doi: https://doi.org/10.1186/2193-1801-3-631.
- 10.Eldridge, H. C., Milliken, A., Farmer, C., Hampton, A., Wendland, N., Coward, L., Gregory, D. J., & Johnson, C. M. (2017). Efficient remediation of 17α-ethinylestradiol by Lentinula edodes (shiitake) laccase. Biocatalysis and Agricultural Biotechnology, 10, 64–68. https://doi.org/10.1016/j.bcab.2017.02.004.Google Scholar
- 11.Vallecillos, L., Sadef, Y., Borrull, F., Pocurull, E., & Bester, K. (2017). Degradation of synthetic fragrances by laccase-mediated system. Journal of Hazardous Materials, 334, 233–243. https://doi.org/10.1016/j.jhazmat.2017.04.003.Google Scholar
- 12.D’Souza-Ticlo, D., Sharma, D., & Raghukumar, C. (2009). A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Marine Biotechnology (NY), 11(6), 725–737. https://doi.org/10.1007/s10126-009-9187-0.Google Scholar
- 13.Kennedy, J., O’Leary, N. D., Kiran, G. S., Morrissey, J. P., O’Gara, F., Selvin, J., & Dobson, A. D. W. (2011). Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. Journal of Applied Microbiology, 111(4), 787–799. https://doi.org/10.1111/j.1365-2672.2011.05106.x.Google Scholar
- 14.Nikolaivits, E., Dimarogona, M., Fokialakis, N., & Topakas, E. (2017). Marine-derived biocatalysts: Importance, accessing, and application in aromatic pollutant bioremediation. Frontiers in Microbiology, 8, 265. https://doi.org/10.3389/fmicb.2017.00265.Google Scholar
- 15.Trincone, A. (2011). Marine biocatalysts: Enzymatic features and applications. Marine Drugs, 9(4), 478–499. https://doi.org/10.3390/md9040478.Google Scholar
- 16.Coulon, F., McKew, B. A., Osborn, A. M., McGenity, T. J., & Timmis, K. N. (2007). Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environmental Microbiology, 9(1), 177–186. https://doi.org/10.1111/j.1462-2920.2006.01126.x.Google Scholar
- 17.Passarini, M. R., Ottoni, C. A., Santos, C., Lima, N., & Sette, L. D. (2015). Induction, expression and characterisation of laccase genes from the marine-derived fungal strains Nigrospora sp. CBMAI 1328 and Arthopyrenia sp. CBMAI 1330. AMB Express, 5, 19. https://doi.org/10.1186/s13568-015-0106-7.
- 18.Li, L., Purnima, S., Ying, L., Shenquan, P., & Guangyi, W. (2014). Diversity and biochemical features of culturable fungi from the coastal waters of southern China. AMB Express, 4(60), 60. https://doi.org/10.1186/s13568-014-0060-9.Google Scholar
- 19.Panno, L., Bruno, M., Voyron, S., Anastasi, A., Gnavi, G., Miserere, L., & Varese, G. C. (2013). Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnology, 30(6), 685–694. https://doi.org/10.1016/j.nbt.2013.01.010.Google Scholar
- 20.Mydlarz, L. D., & Palmer, C. V. (2011). The presence of multiple phenoloxidases in Caribbean reef-building corals. Comparative Biochemistry and Physiology: A Molecular and Integrative Physiology, 159(4), 372–378. https://doi.org/10.1016/j.cbpa.2011.03.029.Google Scholar
- 21.Irving, P., Troxler, L., & Hetru, C. (2004). Is innate enough? The innate immune response in Drosophila. Comptes Rendus Biologies, 327(6), 557–570.Google Scholar
- 22.Amparyup, P., Charoensapsri, W., & Tassanakajon, A. (2013). Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish & Shellfish Immunology, 34(4), 990–1001. https://doi.org/10.1016/j.fsi.2012.08.019.Google Scholar
- 23.Luna-Acosta, A., Rosenfeld, E., Amari, M., Fruitier-Arnaudin, I., Bustamante, P., & Thomas-Guyon, H. (2010). First evidence of laccase activity in the Pacific oyster Crassostrea gigas. Fish & Shellfish Immunology, 28(4), 719–726. https://doi.org/10.1016/j.fsi.2010.01.008.Google Scholar
- 24.Li, Q., Wang, X., Korzhev, M., Schroder, H. C., Link, T., Tahir, M. N., Diehl-Seifert, B., & Muller, W. E. (2015). Potential biological role of laccase from the sponge Suberites domuncula as an antibacterial defense component. Biochimica et Biophysica Acta, 1850(1), 118–128. https://doi.org/10.1016/j.bbagen.2014.10.007.Google Scholar
- 25.Priya, B., Uma, L., Ahamed, A. K., Subramanian, G., & Prabaharan, D. (2011). Ability to use the diazo dye, C.I. Acid Black 1 as a nitrogen source by the marine cyanobacterium Oscillatoria curviceps BDU92191. Bioresource Technology, 102(14), 7218–7223. https://doi.org/10.1016/j.biortech.2011.02.117.Google Scholar
- 26.Lucas-Elio, P., Goodwin, L., Woyke, T., Pitluck, S., Nolan, M., Kyrpides, N. C., Detter, J. C., Copeland, A., Teshima, H., Bruce, D., Detter, C., Tapia, R., Han, S., Land, M. L., Ivanova, N., Mikhailova, N., Johnston, A. W. B., & Sanchez-Amat, A. (2012). Complete genome sequence of the melanogenic marine bacterium Marinomonas mediterranea type strain (MMB-1(T)). Standards in Genomic Science, 6(1), 63–73. https://doi.org/10.4056/sigs.2545743. Google Scholar
- 27.Liu, G., Zhou, J., Meng, X., Fu, S. Q., Wang, J., Jin, R., & Lv, H. (2013). Decolorization of azo dyes by marine Shewanella strains under saline conditions. Applied Microbiology and Biotechnology, 97(9), 4187–4197. https://doi.org/10.1007/s00253-012-4216-8.Google Scholar
- 28.Moghadam, M. S., Albersmeier, A., Winkler, A., Cimmino, L., Rise, K., Hohmann-Marriott, M. F., Kalinowski, J., Ruckert, C., Wentzel, A., & Lale, R. (2016). Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity. BMC Genomics, 17(1), 117. https://doi.org/10.1186/s12864-016-2445-4.Google Scholar
- 29.Raghukumar, C., D’Souza, T. M., Thorn, R. G., & Reddy, C. A. (1999). Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Applied and Environmental Microbiology, 65(5), 2103–2111.Google Scholar
- 30.Verma, A. K., Raghukumar, C., Verma, P., Shouche, Y. S., & Naik, C. G. (2010). Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation, 21(2), 217–233. https://doi.org/10.1007/s10532-009-9295-6.Google Scholar
- 31.Bonugli-Santos, R. C., Durrant, L. R., da Silva, M., & Sette, L. D. (2010). Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme and Microbial Technology, 46(1), 32–37. https://doi.org/10.1016/j.enzmictec.2009.07.014.Google Scholar
- 32.Chen, H. Y., Xue, D. S., Feng, X. Y., & Yao, S. J. (2011). Screening and production of ligninolytic enzyme by a marine-derived fungal Pestalotiopsis sp. J63. Applied Biochemistry and Biotechnology, 165(7–8), 1754–1769. https://doi.org/10.1007/s12010-011-9392-y.Google Scholar
- 33.Jiang, J., Zhou, Z., Dong, Y., Guan, X., Wang, B., Jiang, B., Yang, A., Chen, Z., Gao, S., & Sun, H. (2014). Characterization of phenoloxidase from the sea cucumber Apostichopus japonicus. Immunobiology, 219(6), 450–456. https://doi.org/10.1016/j.imbio.2014.02.006.Google Scholar
- 34.Shi, L., Chan, S., Li, C., & Zhang, S. (2017). Identification and characterization of a laccase from Litopenaeus vannamei involved in anti-bacterial host defense. Fish and Shellfish Immunology, 66, 1–10. https://doi.org/10.1016/j.fsi.2017.04.026.Google Scholar
- 35.Cerenius, L., Babu, R., Söderhäll, K., & Jiravanichpaisal, P. (2010). In vitro effects on bacterial growth of phenoloxidase reaction products. Journal of Invertebrate Pathology, 103(1), 21–23. https://doi.org/10.1016/j.jip.2009.09.006.Google Scholar
- 36.Jiang, J., Zhou, Z., Dong, Y., Cong, C., Guan, X., Wang, B., Chen, Z., Jiang, B., Yang, A., Gao, S., & Sun, H. (2014). In vitro antibacterial analysis of phenoloxidase reaction products from the sea cucumber Apostichopus japonicus. Fish and Shellfish Immunology, 39(2), 458–463. https://doi.org/10.1016/j.fsi.2014.06.002.Google Scholar
- 37.Subramani, R., Kumar, R., Prasad, P., & Aalbersberg, W. (2013). Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of Penicillium sp. Asian Pacific Journal of Tropical Biomedicine, 3(4), 291–296. https://doi.org/10.1016/s2221-1691(13)60065-9.Google Scholar
- 38.Raghukumar, C., D’Souza-Ticlo, D., & Verma, A. K. (2008). Treatment of colored effluents with lignin-degrading enzymes: An emerging role of marine-derived fungi. Critical Reviews in Microbiology, 34(3–4), 189–206. https://doi.org/10.1080/10408410802526044.Google Scholar
- 39.Bonugli-Santos, R. C., Vieira, G. A., Collins, C., Fernandes, T. C., Marin-Morales, M. A., Murray, P., & Sette, L. D. (2016). Enhanced textile dye decolorization by marine-derived basidiomycete Peniophora sp. CBMAI 1063 using integrated statistical design. Environmental Science and Pollution Research International, 23(9), 8659–8668. https://doi.org/10.1007/s11356-016-6053-2.Google Scholar
- 40.Prabaharan, D., Sumathi, M., & Subramanian, G. (1994). Ability to use ampicillin as a nitrogen source by the marine cyanobacterium Phormidium valderianum BDU 30501. Current Microbiology, 28(6), 315–320.Google Scholar
- 41.Saha, S. K., Swaminathan, P., Raghavan, C., Uma, L., & Subramanian, G. (2010). Ligninolytic and antioxidative enzymes of a marine cyanobacterium Oscillatoria willei BDU 130511 during poly R-478 decolourization. Bioresource Technology, 101(9), 3076–3084. https://doi.org/10.1016/j.biortech.2009.12.075.Google Scholar
- 42.Palanisami, S., Prabaharan, D., & Uma, L. (2009). Fate of few pesticide-metabolizing enzymes in the marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyrifos exposure. Pesticide Biochemistry and Physiology, 94(2-3), 68–72. https://doi.org/10.1016/j.pestbp.2009.03.003.Google Scholar
- 43.Priya, B., Sivaprasanth, R. K., Jensi, V. D., Uma, L., Subramanian, G., & Prabaharan, D. (2010). Characterization of manganese superoxide dismutase from a marine cyanobacterium Leptolyngbya valderiana BDU20041. Saline Systems, 6(6), 6. https://doi.org/10.1186/1746-1448-6-6.Google Scholar
- 44.Wang, X., Wang, Q., Guo, X., Liu, L., Guo, J., Yao, J., & Zhu, H. (2015). Functional genomic analysis of Hawaii marine metagenomes. Science Bulletin, 60(3), 348–355. https://doi.org/10.1007/s11434-014-0658-y.Google Scholar
- 45.Fang, Z. M., Li, T. L., Chang, F., Zhou, P., Fang, W., Hong, Y. Z., Zhang, X. C., Peng, H., & Xiao, Y. Z. (2012). A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresource Technology, 111, 36–41. https://doi.org/10.1016/j.biortech.2012.01.172.Google Scholar
- 46.Fang, H., Cai, L., Yang, Y., Ju, F., Li, X., Yu, Y., & Zhang, T. (2014). Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. The Science of the Total Environment, 470–471, 983–992. https://doi.org/10.1016/j.scitotenv.2013.10.076.Google Scholar
- 47.Cheng, Y., Jiang, J., Dong, Y., & Zhou, Z. (2015). Identification and characterization of proteins with phenoloxidase-like activities in the sea urchin Strongylocentrotus nudus. Fish and Shellfish Immunology, 47(1), 117–121. https://doi.org/10.1016/j.fsi.2015.08.020.Google Scholar
- 48.de Souza, D. F., Tychanowicz, G. K., de Souza, C. G., & Peralta, R. M. (2006). Co-production of ligninolytic enzymes by Pleurotus pulmonarius on wheat bran solid state cultures. Journal of Basic Microbiology, 46(2), 126–134. https://doi.org/10.1002/jobm.200510014.Google Scholar
- 49.Sharma, P., Goel, R., & Capalash, N. (2007). Bacterial laccases. World Journal of Microbiology and Biotechnology, 23(6), 823–832. https://doi.org/10.1007/s11274-006-9305-3.Google Scholar
- 50.Fang, Z., Li, T., Wang, Q., Zhang, X., Peng, H., Fang, W., Hong, Y., Ge, H., & Xiao, Y. (2011). A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Applied Microbiology and Biotechnology, 89(4), 1103–1110. https://doi.org/10.1007/s00253-010-2934-3.Google Scholar
- 51.Michniewicz, A., Ullrich, R., Ledakowicz, S., & Hofrichter, M. (2006). The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Applied Microbiology and Biotechnology, 69(6), 682–688. https://doi.org/10.1007/s00253-005-0015-9.Google Scholar
- 52.Naki, A., & Varfolomeev, S. D. (1981). Mechanism of the inhibition of laccase activity from Polyporus versicolor by halide ions. Biokhimiia (Moscow, Russia), 46(9), 1694–1702.Google Scholar
- 53.Raghukumar, C. (2008). Marine fungal biotechnology: An ecological perspective. Fungal Diversity, 31, 19–35.Google Scholar
- 54.Gianfreda, L., Xu, F., & Bollag, J.-M. (1999). Laccases: A useful group of oxidoreductive enzymes. Bioremediation Journal, 3(1), 1–26. https://doi.org/10.1080/10889869991219163.Google Scholar
- 55.Majeau, J.-A., Brar, S. K., & Tyagi, R. D. (2010). Laccases for removal of recalcitrant and emerging pollutants. Bioresource Technology, 101(7), 2331–2350. https://doi.org/10.1016/j.biortech.2009.10.087.Google Scholar
- 56.D’Souza, D. T., Tiwari, R., Sah, A. K., & Raghukumar, C. (2006). Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme and Microbial Technology, 38(3-4), 504–511. https://doi.org/10.1016/j.enzmictec.2005.07.005.Google Scholar
- 57.Divya, L. M., Prasanth, G. K., & Sadasivan, C. (2013). Isolation of a salt tolerant laccase secreting strain of Trichoderma sp. NFCCI-2745 and optimization of culture conditions and assessing its effectiveness in treating saline phenolic effluents. Journal of Environmental Sciences, 25(12), 2410–2416. https://doi.org/10.1016/S1001-0742(12)60321-0.Google Scholar
- 58.Li, J., Xie, Y., Wang, R., Fang, Z., Fang, W., Zhang, X., & Xiao, Y. (2018). Mechanism of salt-induced activity enhancement of a marine-derived laccase, Lac15. European Biophysics Journal: EBJ, 47(3), 225–236. https://doi.org/10.1007/s00249-017-1251-5.Google Scholar
- 59.DeSouza-Ticlo, D., Verma, A. K., Mathew, M., & Raghukumar, C. (2006). Effect of nutrient nitrogen on laccase production, its isozyme pattern and effluent decolorization by the fungus NIOCC no #2a, isolated from mangrove wood. Indian Journal of Marine Sciences, 35(4), 364–372.Google Scholar
- 60.Feng, X., Chen, H., Xue, D., & Yao, S. (2013). Enhancement of laccase activity by marine-derived Deuteromycete Pestalotiopsis sp. J63 with agricultural residues and inducers. Chinese Journal of Chemical Engineering, 21(10), 1182–1189. https://doi.org/10.1016/S1004-9541(13)60567-4.Google Scholar
- 61.Yang, J., Wang, G., Ng, T. B., Lin, J., & Ye, X. (2016). Laccase production and differential transcription of laccase genes in Cerrena sp. in response to metal ions, aromatic compounds, and nutrients. Frontiers in Microbiology, 6. doi: https://doi.org/10.3389/fmicb.2015.01558.
- 62.Si, J., & Cui, B.-K. (2013). Study of the physiological characteristics of the medicinal mushroom Trametes pubescens (higher Basidiomycetes) during the laccase-producing process. International Journal of Medicinal Mushrooms, 15(2), 199–210.Google Scholar
- 63.Nakade, K., Nakagawa, Y., Yano, A., Konno, N., Sato, T., & Sakamoto, Y. (2013). Effective induction of pblac1 laccase by copper ion in Polyporus brumalis ibrc05015. 117, 52–61. https://doi.org/10.1016/j.funbio.2012.11.005
- 64.Manavalan, T., Manavalan, A., Thangavelu, K. P., & Heese, K. (2013). Characterization of optimized production, purification and application of laccase from Ganoderma lucidum. Biochemical Engineering Journal, 70, 106–114. https://doi.org/10.1016/j.bej.2012.10.007.Google Scholar
- 65.Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., & Sannia, G. (2000). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 66(3), 920–924. https://doi.org/10.1128/AEM.66.3.920-924.2000.Google Scholar
- 66.Giardina, P., Palmieri, G., Scaloni, A., Fontanella, B., Faraco, V., Cennamo, G., & Sannia, G. (1999). Protein and gene structure of a blue laccase from Pleurotus ostreatus1. Biochemical Journal, 341(Pt 3), 655–663.Google Scholar
- 67.Yang, Y., Wei, F., Zhuo, R., Fan, F., Liu, H., Zhang, C., Ma, L., Jiang, M., & Zhang, X. (2013). Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds. PLoS One, 8(11), e79307. https://doi.org/10.1371/journal.pone.0079307.Google Scholar
- 68.Hao, J., Song, F., Huang, F., Yang, C., Zhang, Z., Zheng, Y., & Tian, X. (2007). Production of laccase by a newly isolated deuteromycete fungus Pestalotiopsis sp. and its decolorization of azo dye. Journal of Industrial Microbiology & Biotechnology, 34(3), 233–240. https://doi.org/10.1007/s10295-006-0191-3.Google Scholar
- 69.Piscitelli, A., Giardina, P., Lettera, V., Pezzella, C., Sannia, G., & Faraco, V. (2011). Induction and transcriptional regulation of laccases in fungi. Current Genomics, 12(2), 104–112. https://doi.org/10.2174/138920211795564331.Google Scholar
- 70.Singh, R. P., Singh, P. K., & Singh, R. L. (2014). Bacterial decolorization of textile azo dye acid orange by Staphylococcus hominis RMLRT03. Toxicology International, 21(2), 160–166. https://doi.org/10.4103/0971-6580.139797.Google Scholar
- 71.Pirok, B. W. J., Knip, J., van Bommel, M. R., & Schoenmakers, P. J. (2016). Characterization of synthetic dyes by comprehensive two-dimensional liquid chromatography combining ion-exchange chromatography and fast ion-pair reversed-phase chromatography. Journal of Chromatography A, 1436, 141–146. https://doi.org/10.1016/j.chroma.2016.01.070.Google Scholar
- 72.Ambatkar, M., & Mukundan, U. (2014). Enzymatic decolourisation of methyl Orange and Bismarck Brown using crude peroxidase from Armoracia rusticana. Applied Water Science, 5(4), 397–406. https://doi.org/10.1007/s13201-014-0197-3.Google Scholar
- 73.Passarini, M. R. Z., Santos, C., Lima, N., Berlinck, R. G. S., & Sette, L. D. (2013). Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum. Archives of Microbiology, 195(2), 99–111. https://doi.org/10.1007/s00203-012-0854-6.Google Scholar
- 74.Theerachat, M., Morel, S., Guieysse, D., Remaud-Simeon, M., & Chulalaksananukul, W. (2012). Comparison of synthetic dye decolorization by whole cells and a laccase enriched extract from Trametes versicolor DSM11269. African Journal of Biotechnology, 11(8), 1964–1969. https://doi.org/10.5897/AJB11.2469.Google Scholar
- 75.Asad, S., Amoozegar, M. A., Pourbabaee, A. A., Sarbolouki, M. N., & Dastgheib, S. M. M. (2007). Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource Technology, 98(11), 2082–2088. https://doi.org/10.1016/j.biortech.2006.08.020.Google Scholar
- 76.Ogugbue, C. J., Sawidis, T., & Oranusi, N. A. (2011). Evaluation of colour removal in synthetic saline wastewater containing azo dyes using an immobilized halotolerant cell system. Ecological Engineering, 37(12), 2056–2060. https://doi.org/10.1016/j.ecoleng.2011.09.003.Google Scholar
- 77.Wu, J., Kim, K.-S., Sung, N.-C., Kim, C.-H., & Lee, Y.-C. (2009). Isolation and characterization of Shewanella oneidensis WL-7 capable of decolorizing azo dye reactive black 5. The Journal of General and Applied Microbiology, 55(1), 51–55.Google Scholar
- 78.Ip, A. W. M., Barford, J. P., & McKay, G. (2010). Biodegradation of reactive black 5 and bioregeneration in upflow fixed bed bioreactors packed with different adsorbents. Journal of Chemical Technology & Biotechnology, 85(5), 658–667. https://doi.org/10.1002/jctb.2349.Google Scholar
- 79.Gopalakrishnan, R., & Sellappa, S. (2011). Decolourisation of methyl orange and methyl red by live and dead biomass of fungi. Asian Journal of Experimental Biological Sciences, 2(4), 569–574.Google Scholar
- 80.Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22(1-2), 161–187. https://doi.org/10.1016/j.biotechadv.2003.08.011.Google Scholar
- 81.Ali, N., Ikramullah, Lutfullah, G., Hameed, A., & Ahmed, S. (2007). Decolorization of acid red 151 by Aspergillus niger SA1 under different physicochemical conditions. World Journal of Microbiology and Biotechnology, 24(7), 1099–1105. https://doi.org/10.1007/s11274-007-9581-6.Google Scholar
- 82.Aksu, Z., & Karabayır, G. (2008). Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan black RL metal-complex dye. Bioresource Technology, 99(16), 7730–7741. https://doi.org/10.1016/j.biortech.2008.01.056.Google Scholar
- 83.Magan, N., Fragoeiro, S., & Bastos, C. (2010). Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiology, 38(4), 238–248. https://doi.org/10.4489/MYCO.2010.38.4.238.Google Scholar
- 84.Mougin, C., Pericaud, C., Malosse, C., Laugero, C., & Asther, M. (n.d.). Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pesticide Science, 47(1), 51–59. https://doi.org/10.1002/(SICI)1096-9063(199605)47:1<51::AID-PS391>3.0.CO;2-V.
- 85.da Coelho-Moreira, J. S., Bracht, A., da Silva de Souza, A. C., Oliveira, R. F., de Sá-Nakanishi, A. B., de Souza, C. G. M., & Peralta, R. M. (2013). Degradation of Diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450. BioMed Research International, 2013. ID 251354. doi: https://doi.org/10.1155/2013/251354
- 86.Nagpal, V., Srinivasan, M. C., & Paknikar, K. M. (2008). Biodegradation of γ-hexachlorocyclohexane (Lindane) by a non-white rot fungus Conidiobolus 03-1-56 isolated from litter. Indian Journal of Microbiology, 48(1), 134–141. https://doi.org/10.1007/s12088-008-0013-6.Google Scholar
- 87.Ulčnik, A., Cigić, I. K., & Pohleven, F. (2013). Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World Journal of Microbiology and Biotechnology, 29(12), 2239–2247. https://doi.org/10.1007/s11274-013-1389-y.Google Scholar
- 88.Donoso, C., Becerra, J., Martínez, M., Garrido, N., & Silva, M. (2008). Degradative ability of 2,4,6-tribromophenol by saprophytic fungi Trametes versicolor and Agaricus augustus isolated from chilean forestry. World Journal of Microbiology and Biotechnology, 24(7), 961–968. https://doi.org/10.1007/s11274-007-9559-4.Google Scholar
- 89.Balcázar-López, E., Méndez-Lorenzo, L. H., Batista-García, R. A., Esquivel-Naranjo, U., Ayala, M., Kumar, V. V., Savary, O., Cabana, H., Herrera-Estrella, A., & Folch-Mallol, J. L. (2016). Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride. PLoS One, 11(2), e0147997. https://doi.org/10.1371/journal.pone.0147997.Google Scholar
- 90.Bollag, J. M., Chu, H.-L., Rao, M. A., & Gianfreda, L. (2003). Enzymatic oxidative transformation of chlorophenol mixtures. Journal of Environmental Quality, 32(1), 63–69.Google Scholar
- 91.Arakaki, R. L., Monteiro, D. A., Boscolo, M., Dasilva, R., & Gomes, E. (2014). Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains. Brazilian Journal of Microbiology, 44(4), 1207–1214. https://doi.org/10.1590/S1517-83822014005000014.Google Scholar
- 92.Petrovič, U., Gunde-Cimerman, N., & Plemenitaš, A. (n.d.). Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Molecular Microbiology, 45(3), 665–672. https://doi.org/10.1046/j.1365-2958.2002.03021.x.
- 93.Bautista, L. F., Morales, G., & Sanz, R. (2015). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15. Chemosphere, 136, 273–280. https://doi.org/10.1016/j.chemosphere.2015.05.071.Google Scholar
- 94.Zeng, J., Lin, X., Zhang, J., Li, X., & Wong, M. H. (2011). Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli. Applied Microbiology and Biotechnology, 89(6), 1841–1849. https://doi.org/10.1007/s00253-010-3009-1.Google Scholar
- 95.Wu, Y., Teng, Y., Li, Z., Liao, X., & Luo, Y. (2008). Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biology and Biochemistry, 40(3), 789–796. https://doi.org/10.1016/j.soilbio.2007.10.013.Google Scholar
- 96.Chandra, R., & Chowdhary, P. (2015). Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environmental Science Processes & Impacts, 17(2), 326–342. https://doi.org/10.1039/c4em00627e.Google Scholar
- 97.Wu, Y.-R., Luo, Z.-H., & Vrijmoed, L. L. P. (2010). Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresource Technology, 101(24), 9666–9672. https://doi.org/10.1016/j.biortech.2010.07.049.Google Scholar
- 98.Louvado, A., Gomes, N. C. M., Simões, M. M. Q., Almeida, A., Cleary, D. F. R., & Cunha, A. (2015). Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment. The Science of the Total Environment, 526, 312–328. https://doi.org/10.1016/j.scitotenv.2015.04.048.Google Scholar
- 99.Zhang, A., Zhao, S., Wang, L., Yang, X., Zhao, Q., Fan, J., & Yuan, X. (2016). Polycyclic aromatic hydrocarbons (PAHs) in seawater and sediments from the northern Liaodong Bay, China. Marine Pollution Bulletin, 113(1), 592–599. https://doi.org/10.1016/j.marpolbul.2016.09.005.Google Scholar
- 100.Marini, M., & Frapiccini, E. (2013). Persistence of polycyclic aromatic hydrocarbons in sediments in the deeper area of the northern Adriatic Sea (Mediterranean Sea). Chemosphere, 90(6), 1839–1846. https://doi.org/10.1016/j.chemosphere.2012.09.080.Google Scholar
- 101.Schedler, M., Hiessl, R., Valladares Juárez, A. G., Gust, G., & Müller, R. (2014). Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express, 4, 77. https://doi.org/10.1186/s13568-014-0077-0.Google Scholar