Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 2, pp 612–627 | Cite as

Efficient Production of Polymalic Acid by a Novel Isolated Aureobasidium pullulans Using Metabolic Intermediates and Inhibitors

  • Wei Zeng
  • Bin Zhang
  • Guiguang Chen
  • Mengxuan Li
  • Zhiqun LiangEmail author
Article
  • 137 Downloads

Abstract

Polymalic acid (PMA) is a linear anionic polyester composed of l-malic acid monomers, which have potential applications as drug carriers, surgical suture, and biodegradable plastics. In this study, a novel strain of Aureobasidium pullulans var. melanogenum GXZ-6 was isolated and identified according to the morphological observation and deoxyribonucleic acid internal-transcribed spacer sequence analysis, and the product of PMA was characterized by FT-IR, 13C-NMR, and 1H-NMR spectra. The PMA titer of GXZ-6 reached 62.56 ± 1.18 g L−1 with productivity of 0.35 g L−1 h−1 using optimized medium with addition of metabolic intermediates (citrate and malate) and inhibitor (malonate) by batch fermentation in a 10-L fermentor. Besides that the malate for PMA synthesis in GXZ-6 might mainly come from the glyoxylate cycle, based on results, citrate, malate, malonate, and maleate increased while succinate and fumarate inhibited the production of PMA, which was different from that of other A. pullulans. This study provided a potential strain and a simple metabolic control strategy for high-titer production of PMA and shared novel information on the biosynthesis pathway of PMA in A. pullulans.

Keywords

Polymalic acid Aureobasidium pullulans var. melanogenum High-titer Metabolic control Biosynthesis pathway 

Notes

Funding Information

This work was financially supported by the National Natural Science Foundation of China (21506039, 31760452, 31560448) and the Natural Science Foundation of Guangxi Province (2016GXNSFAA380140, 2015GXNSFBA139052).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chi, Z., Liu, G. L., Liu, C. G., & Chi, Z. M. (2016). Poly(β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Applied Microbiology and Biotechnology, 100(9), 3841–3851.CrossRefGoogle Scholar
  2. 2.
    Ding, H., Helguera, G., Rodriguez, J. A., Markman, J., Luria-Perez, R., Gangalum, P., Portilla-Arias, J., Inoue, S., Daniels-Wells, T. R., Black, K., Holler, E., Penichet, M. L., & Ljubimova, J. Y. (2013). Polymalic acid nanobioconjugate for simultaneous immunostimulation and inhibition of tumor growth in HER2/neu-positive breast cancer. Journal of Controlled Release, 171(3), 322–329.CrossRefGoogle Scholar
  3. 3.
    Chi, Z., Wang, Z. P., Wang, G. Y., Khan, I., & Chi, Z. M. (2016). Microbial biosynthesis and secretion of l-malic acid and its applications. Critical Reviews in Biotechnology, 36(1), 99–107.CrossRefGoogle Scholar
  4. 4.
    Zou, X., Zhou, Y., & Yang, S. T. (2013). Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnology and Bioengineering, 110(8), 2105–2113.CrossRefGoogle Scholar
  5. 5.
    Shimada, K., Matsushima, K. i., Fukumoto, J., & Yamamoto, T. (1969). Poly-(l)-malic acid; a new protease inhibitor from Penicillium cyclopium. Biochemical and Biophysical Research Communications, 35(5), 619–624.CrossRefGoogle Scholar
  6. 6.
    Fischer, H., Erdmann, S., & Holler, E. (1989). An unusual polyanion from Physarum polycephalum that inhibits homologous DNA-polymerase α in vitro. Biochemistry, 28(12), 5219–5226.CrossRefGoogle Scholar
  7. 7.
    Nagata, N., Nakahara, T., & Tabuchi, T. (1993). Fermentative production of poly(β-l-malic acid), a polyelectrolytic biopolyester, by Aureobasidium sp. Bioscience, Biotechnology, and Biochemistry, 57(4), 638–642.CrossRefGoogle Scholar
  8. 8.
    Rathberger, K., Reisner, H., Willibald, B., Molitoris, H.-P., & Holler, E. (1999). Comparative synthesis and hydrolytic degradation of poly (l-malate) by myxomycetes and fungi. Mycological Research, 103(5), 513–520.CrossRefGoogle Scholar
  9. 9.
    Liu, S. J., & Steinbuchel, A. (1996). Investigation of poly ( β-l-malic acid) production by strains of Aureobasidium pullulans. Applied Microbiology and Biotechnology, 46(3), 273–278.CrossRefGoogle Scholar
  10. 10.
    Zhang, H., Cai, J., Dong, J., Zhang, D., Huang, L., Xu, Z., & Cen, P. (2011). High-level production of poly (β-l-malic acid) with a new isolated Aureobasidium pullulans strain. Applied Microbiology and Biotechnology, 92(2), 295–303.CrossRefGoogle Scholar
  11. 11.
    Cao, W., Qi, B., Zhao, J., Qiao, C., Su, Y., & Wan, Y. (2013). Control strategy of pH, dissolved oxygen concentration and stirring speed for enhancing β-poly (malic acid) production by Aureobasidium pullulans ipe-1. Journal of Chemical Technology & Biotechnology, 88(5), 808–817.CrossRefGoogle Scholar
  12. 12.
    Zou, X., Yang, J., Tian, X., Guo, M., Li, Z., & Li, Y. (2016). Production of polymalic acid and malic acid from xylose and corncob hydrolysate by a novel Aureobasidium pullulans YJ 6–11 strain. Process Biochemistry, 51(1), 16–23.CrossRefGoogle Scholar
  13. 13.
    Wei, P., Cheng, C., Lin, M., Zhou, Y., & Yang, S. T. (2017). Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: kinetics and process economics. Bioresource Technology, 224, 581–589.CrossRefGoogle Scholar
  14. 14.
    Liu, S. J., & Steinbuchel, A. (1997). Production of poly(malic acid) from different carbon sources and its regulation in Aureobasidium pullulans. Biotechnology Letters, 19(1), 11–14.CrossRefGoogle Scholar
  15. 15.
    Cao, W., Luo, J., Qi, B., Zhao, J., Qiao, C., Ding, L., Su, Y., & Wan, Y. (2014). β-Poly(l-malic acid) production by fed-batch culture of Aureobasidium pullulans ipe-1 with mixed sugars. Engineering in Life Sciences, 14(2), 180–189.CrossRefGoogle Scholar
  16. 16.
    Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.CrossRefGoogle Scholar
  17. 17.
    Wang, Y., Song, X., Zhang, Y., Wang, B., & Zou, X. (2016). Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans. Microbial Cell Factories, 15(1), 146.CrossRefGoogle Scholar
  18. 18.
    Yurlova, N. A., & de Hoog, G. S. (1997). A new variety of Aureobasidium pullulans characterized by exopolysaccharide structure, nutritional physiology and molecular features. Antonie van Leeuwenhoek, 72(2), 141–147.CrossRefGoogle Scholar
  19. 19.
    Zalar, P., Gostincar, C., de Hoog, G. S., Ursic, V., Sudhadham, M., & Gunde-Cimerman, N. (2008). Redefinition of Aureobasidium pullulans and its varieties. Studies in Mycology, 61, 21–38.CrossRefGoogle Scholar
  20. 20.
    Manitchotpisit, P., Skory, C. D., Peterson, S. W., Price, N. P., Vermillion, K. E., & Leathers, T. D. (2012). Poly(β-l-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans. Journal of Industrial Microbiology & Biotechnology, 39(1), 125–132.CrossRefGoogle Scholar
  21. 21.
    Wang, Y. K., Chi, Z., Zhou, H. X., Liu, G. L., & Chi, Z. M. (2015). Enhanced production of Ca2+-polymalate (PMA) with high molecular mass by Aureobasidium pullulans var. pullulans MCW. Microbial Cell Factories, 14(1), 115.CrossRefGoogle Scholar
  22. 22.
    Zan, Z., & Zou, X. (2013). Efficient production of polymalic acid from raw sweet potato hydrolysate with immobilized cells of Aureobasidium pullulans CCTCC M2012223 in aerobic fibrous bed bioreactor. Journal of Chemical Technology & Biotechnology, 88(10), 1822–1827.CrossRefGoogle Scholar
  23. 23.
    Cheng, C., Zhou, Y., Lin, M., Wei, P., & Yang, S. T. (2017). Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis. Bioresource Technology, 223, 166–174.CrossRefGoogle Scholar
  24. 24.
    Chi, Z., Wang, F., Chi, Z., Yue, L., Liu, G., & Zhang, T. (2009). Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Applied Microbiology and Biotechnology, 82(5), 793–804.CrossRefGoogle Scholar
  25. 25.
    Gostincar, C., Ohm, R. A., Kogej, T., Sonjak, S., Turk, M., Zajc, J., Zalar, P., Grube, M., Sun, H., Han, J., Sharma, A., Chiniquy, J., Ngan, C. Y., Lipzen, A., Barry, K., Grigoriev, I. V., & Gunde-Cimerman, N. (2014). Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics, 15(1), 549.CrossRefGoogle Scholar
  26. 26.
    Jiang, H., Liu, G. L., Chi, Z., Wang, J. M., Zhang, L. L., & Chi, Z. M. (2017). Both a PKS and a PPTase are involved in melanin biosynthesis and regulation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert. Gene, 602, 8–15.CrossRefGoogle Scholar
  27. 27.
    Gasslmaier, B., & Holler, E. (1997). Specificity and direction of depolymerization of β-poly(l-malate) catalysed by polymalatase from Physarum polycephalum fluorescence labeling at the carboxy-terminus of β-poly(l-malate). European Journal of Biochemistry, 250(2), 308–314.CrossRefGoogle Scholar
  28. 28.
    Lee, B. S., & Holler, E. (2000). β-Poly(l-malate) production by non-growing microplasmodia of Physarum polycephalum effects of metabolic intermediates and inhibitors. FEMS Microbiology Letters, 193(1), 69–74.Google Scholar
  29. 29.
    Feng, J., Yang, J., Li, X., Guo, M., Wang, B., Yang, S. T., & Zou, X. (2017). Reconstruction of a genome-scale metabolic model and in silico analysis of the polymalic acid producer Aureobasidium pullulans CCTCC M2012223. Gene, 607, 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresourcesGuangxi UniversityNanningChina
  2. 2.College of Life Science and TechnologyGuangxi UniversityNanningChina

Personalised recommendations