Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 338–351 | Cite as

Autotrophic, Heterotrophic, and Mixotrophic Nitrogen Assimilation for Single-Cell Protein Production by Two Hydrogen-Oxidizing Bacterial Strains

  • Junwei Dou
  • Yanmeng Huang
  • Haiwei Ren
  • Zhizhong Li
  • Qin Cao
  • Xiaofeng Liu
  • Dong Li
Article

Abstract

To recover a nitrogen resource from high-ammonia-nitrogen wastewater, two amphitrophic hydrogen-oxidizing bacteria (HOB), Paracoccus denitrificans Y5 and P. versutus D6, capable of nitrogen assimilation for single-cell protein (SCP) production were isolated. These two HOB strains could grow autotrophically with H2 as an electron donor, O2 as an electron acceptor, CO2 as a carbon source, and ammonia nitrogen (NH4+-N) as a nitrogen source. The cell molecular formulas of strains Y5 and D6 determined by autotrophic cultivation were C3.33H6.83O2.58N0.77 and C2.87H5.34O3.17N0.57, respectively. The isolated strains could synchronously remove NH4+-N and organic carbon and produce SCP via heterotrophic cultivation. The rates of removal of NH4+-N and soluble chemical oxygen demand reached 35.47 and 49.04%, respectively, for Y5 under mixotrophic cultivation conditions with biogas slurry as a substrate. SCP content of strains Y5 and D6 was 67.34–73.73% based on cell dry weight. Compared with soybean meal, the SCP of Y5 contained a variety of amino acids.

Keywords

High-ammonia-nitrogen wastewater Hydrogen-oxidizing bacterium Nitrogen assimilation Single-cell protein Mixotrophy Paracoccus 

Notes

Acknowledgements

This study was supported jointly by the National Key R & D Program of China (2018YFD0501405), by the Youth Innovation Promotion Association CAS (2017423), the Key Project for Foreign Cooperation of the International Cooperation Bureau of the Chinese Academy of Sciences (182344KYSB20170009), the Science and Technology Service Network Initiative (STS) of the Chinese Academy of Sciences, the Key Laboratory of Environmental and Applied Microbiology of Chengdu Institute of Biology CAS (KLCAS-2016-10, KLCAS-2017-9), and the Chengdu Science and Technology Huimin Project (2016-HM02-00092-SF).

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Xing, W., Zhang, W. Q., Li, D. S., Li, J. L., Jia, F. F., Cui, Y. W., & Ren, F. M. (2017). An integrated O/A two-stage packed-bed reactor (INT-PBR) for total nitrogen removal from low organic carbon wastewater. Chemical Engineering Journal, 328, 894–903.CrossRefGoogle Scholar
  2. 2.
    Khardenavis, A. A., Kapley, A., & Purohit, H. J. (2007). Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Applied Microbial and Cell Physiology, 77, 403–409.Google Scholar
  3. 3.
    Medhi, K., Singhal, A., Chauhan, D. K., & Thakur, I. S. (2017). Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by Paracoccus denitrificans ISTOD1. Bioresource Technology, 242, 334–343.CrossRefGoogle Scholar
  4. 4.
    Hou, J., Xia, L., Ma, T., Zhang, Y. Q., Zhou, Y. Y., & He, X. G. (2017). Achieving short-cut nitrification and denitrification in modified intermittently aerated constructed wetland. Bioresource Technology, 232, 10–17.CrossRefGoogle Scholar
  5. 5.
    Wei, H. W., Wang, J., Hassan, M., Han, L., & Xie, B. (2017). Anaerobic ammonium oxidation-denitrification synergistic interaction of mature landfill leachate in aged refuse bioreactor: Variations and effects of microbial community structures. Bioresource Technology, 243, 1149–1158.CrossRefGoogle Scholar
  6. 6.
    Jalasutram, V., Kataram, S., Gandu, B., & Anupoju, G. (2013). Single cell protein production from digested and undigested poultry litter by Candida utilis: optimization of process parameters using response surface methodology. Clean Technologies and Environmental Policy, 15(2), 265–273.CrossRefGoogle Scholar
  7. 7.
    Matassa, S., Boon, N., Arends, J. B. A., & Verstraete, W. (2015). H2-oxidizing bacteria for single cell protein production and sustainable nitrogen cycling, Resource Recovery, 1st IWA Conference, Abstracts.Google Scholar
  8. 8.
    Nangul, A., & Bhatia, R. (2013). Microorganisms: a marvelous source of single cell proteins. The Journal of Microbiology, Biotechnology and Food Sciences, 31, 15–18.Google Scholar
  9. 9.
    Nasseri, A. T., Rasoul-Amini, S., Morowvat, M. H., & Ghasemi, Y. (2011). Single cell protein: production and process. American Journal of Food Technology, 6, 103–116.CrossRefGoogle Scholar
  10. 10.
    Pohlmann, A., Fricke, W. F., Reinecke, F., Kusian, B., Liesegang, H., Cramm, R., Eitinger, T., Ewering, C., Potter, M., Schwartz, E., Strittmatter, A., Vosz, I., Gottschalk, G., Steinbuchel, A., Friedrich, B., & Bowien, B. (2006). Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nature Biotechnology, 24(10), 1257–1262.CrossRefGoogle Scholar
  11. 11.
    Matassa, S., Boon, N., & Verstraete, W. (2015). Resource recovery from used water: the manufacturing abilities of hydrogen-oxidizing bacteria. Water Research, 68, 467–478.CrossRefGoogle Scholar
  12. 12.
    Anupama, & Ravindra, P. (2000). Value-added food: single cell protein. Biotechnology Advances, 18(6), 459–479.CrossRefGoogle Scholar
  13. 13.
    Repaske, R. (1966). Characteristics of hydrogen bacteria. Biotechnology and Bioengineering, 8(2), 217–235.CrossRefGoogle Scholar
  14. 14.
    Volova, T. G., & Barashkov, V. A. (2010). Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms. Applied Biochemistry and Microbiology, 46(6), 574–579.CrossRefGoogle Scholar
  15. 15.
    Aragno, M., & Schlegel, H. G. (1978). Physiological characterization of the hydrogen bacterium Aquaspirillum autotrophicum. Archives of Microbiology, 116(3), 221–229.CrossRefGoogle Scholar
  16. 16.
    Vandamme, P., & Coenye, T. (2004). Taxonomy of the genus Cupriavidus: a tale of lost and found. International Journal of Systematic and Evolutionary Microbiology, 54(6), 2285–2289.CrossRefGoogle Scholar
  17. 17.
    Yu, J., Dow, A., & Pingali, S. (2013). The energy efficiency of carbon dioxide fixation by a hydrogen-oxidizing bacterium. International Journal of Hydrogen Energy, 38(21), 8683–8690.CrossRefGoogle Scholar
  18. 18.
    Hu, J., Wang, L., Li, Y., Fu, X., Le, Y., Xu, D., Lu, B., & Yu, J. (2009). Breeding, optimization and community structure analysis of non-photosynthetic CO2 assimilation microbial flora. Environmental Science, 30, 2438–2444.Google Scholar
  19. 19.
    Bae, S., Kwak, K., Kim, S., Chung, S. Y., & Igarashi, Y. (2001). Isolation and characterization of CO2-fixing hydrogen-oxidizing marine bacteria. Journal of Bioscience and Bioengineering, 91(5), 442–448.CrossRefGoogle Scholar
  20. 20.
    Nguyen, S., Ala, F., Cardwell, C., Cai, D., McKindles, K. M., Lotvola, A., Hodges, S., Deng, Y., & Tiquia-Arashiro, S. M. (2013). Isolation and screening of carboxydotrophs isolated from composts and their potential for butanol synthesis. Environmental Technology, 34(13-14), 1995–2007.CrossRefGoogle Scholar
  21. 21.
    APHA. (1998). Standard methods for the examination of water and wastewater. 21st Edition. American Public Health Association.Google Scholar
  22. 22.
    Tanaka, K., Miyawaki, K., Yamaguchi, A., Khosravi-Darani, K., & Matsusaki, H. (2011). Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1. Applied Microbiology and Biotechnology, 92(6), 1161–1169.CrossRefGoogle Scholar
  23. 23.
    Garcia-Gonzalez, L., Mozumder, M. S. I., Dubreuil, M., Volcke, E. I. P., & De Wever, H. (2015). Sustainable autotrophic production of polyhydroxybutyrate (PHB) from CO2 using a two-stage cultivation system. Catalysis Today, 257, 237–245.CrossRefGoogle Scholar
  24. 24.
    Repaske, R. (1962). Nutritional requirements for Hydrogenomonas eutropha. Journal of Bacteriology, 83, 418–422.Google Scholar
  25. 25.
    Cohen, J. S., & Burris, R. H. (1955). A method for the culture of hydrogen bacteria. Journal of Bacteriology, 69(3), 316–319.Google Scholar
  26. 26.
    Matassa, S., Verstraete, W., Pikaar, I., & Boon, N. (2016). Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Research, 101, 137–146.CrossRefGoogle Scholar
  27. 27.
    Lo, S. N., & Moreau, J. R. (1986). Mixed-culture microbial protein from waste sulfite pulping liquor II: its production on pilot-plant scale and use in animal feed. Canadian Journal of Chemical Engineering, 64(4), 639–646.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduPeople’s Republic of China
  2. 2.School of Life Science and EngineeringLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations