Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 239–252 | Cite as

Expression and Extracellular Secretion of Endo-glucanase and Xylanase by Zymomonas mobilis

  • Tatsaporn TodhanakasemEmail author
  • Apinya Sowatad
  • Pattanop Kanokratana
  • Phattara-orn Havanapan
  • Verawat Champreda


Recombinant Zymomonas mobilis (pGEX-4T-3 BI 120-2) was constructed to encode endo-glucanase (CelA) and endo-xylanase (Xyn11) from Z. mobilis ZM4 (ATCC 31821) and an uncultured bacterium. The recombinant was genetically engineered with the N-terminus of a predicted SecB-dependent (type II) secretion signal from phoC of Z. mobilis to translocate the enzymes extracellularly. Both the enzymes were characterized regarding their functional optimum pH and temperature, with the highest multi-enzyme activities at pH 6.0 and a temperature of 30 °C, which approximates the optimum conditions for ethanol production by Z. mobilis. The crude intracellular and extracellular fractions of the recombinant were characterized in terms of substrate specificity using carboxymethyl cellulose (CMC), beechwood xylan, filter paper, Avicel, and pretreated rice straw. The crude extracellular and intracellular enzymes with cellulolytic and xylanolytic activities were more robustly produced and secreted from the recombinant strain compared to the wild-type and ampicillin-sensitive strains, using CMC and beechwood xylan as the substrates. Ethanol production by the recombinant strain was greater than the production by the wild-type strain when pretreated rice straw was used as a sole carbon source.


Zymomonas mobilis Cellulase Xylanase Extracellular Ethanol production 



This work was financially supported by an Assumption University Research Grant (RP 59-002), Thailand.


The Z. mobilis ZM4 (NRRL B-14023) used in this study was obtained from Professor Pornthap Thanonkeo, Khon Kaen University, Thailand.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577.Google Scholar
  2. 2.
    Lynd, L. R., Van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Current Opinion in Biotechnology, 16(5), 577–583.Google Scholar
  3. 3.
    Carere, C. R., Sparling, R., Cicek, N., & Levin, D. B. (2008). Third generation biofuels via direct cellulose fermentation. International Journal of Molecular Sciences, 9(7), 1342–1360.Google Scholar
  4. 4.
    Antoni, D., Zverlov, V. V., & Schwarz, W. H. (2007). Biofuels from microbes. Applied Microbiology and Biotechnology, 77(1), 23–35.Google Scholar
  5. 5.
    Todhanakasem, T., Sangsutthiseree, A., Areerat, K., Young, G. M., & Thanonkeo, P. (2014). Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnology, 31, 451–459.Google Scholar
  6. 6.
    Olofsson, K., Bertilsson, M., & Lidén, G. (2008). A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels, 1(1), 7.Google Scholar
  7. 7.
    Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11.Google Scholar
  8. 8.
    Rogers, P. L., Jeon, Y. J., Lee, K. J., & Lawford, H. G. (2007). Zymomonas mobilis for fuel ethanol and higher value products. In Biofuels (pp. 263–288). Berlin, Heidelberg: Springer.Google Scholar
  9. 9.
    Swings, J., & De Ley, J. (1977). The biology of Zymomonas. Bacteriological Reviews, 41, 1.Google Scholar
  10. 10.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., & Picataggio, S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science, 267(5195), 240–243.Google Scholar
  11. 11.
    Zhang, M., Franden, M., Newman, M., McMillan, J., Finkelstein, M., & Picataggio, S. (1995). Promising ethanologens for xylose fermentation. Applied Biochemistry and Biotechnology, 51, 527–536.Google Scholar
  12. 12.
    He, M. X., Wu, B., Qin, H., Ruan, Z. Y., Tan, F. R., Wang, J. L., Shui, Z. X., Dai, L. C., Zhu, Q. L., & Pan, K. (2014). Zymomonas mobilis: a novel platform for future biorefineries. Biotechnology for Biofuels, 7, 101.Google Scholar
  13. 13.
    Polizeli, M., Rizzatti, A., Monti, R., Terenzi, H., Jorge, J. A., & Amorim, D. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67(5), 577–591.Google Scholar
  14. 14.
    Dodd, D., & Cann, I. K. (2009). Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy, 1(1), 2–17.Google Scholar
  15. 15.
    Sanchez, O. J., & Cardona, C. A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99(13), 5270–5295.Google Scholar
  16. 16.
    Linger, J. G., Adney, W. S., & Darzins, A. (2010). Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Applied and Environmental Microbiology, 76, 6360–6369.Google Scholar
  17. 17.
    Kojima, M., Okamoto, K., & Yanase, H. (2013). Direct ethanol production from cellulosic materials by Zymobacter palmae carrying Cellulomonas endoglucanase and Ruminococcus β-glucosidase genes. Applied Microbiology and Biotechnology, 97, 5137–5147.Google Scholar
  18. 18.
    Luo, Z., & Bao, J. (2015). Secretive expression of heterologous β-glucosidase in Zymomonas mobilis. Bioresources and Bioprocessing, 2, 1–6.Google Scholar
  19. 19.
    Seo, J.-S., Chong, H., Park, H. S., Yoon, K.-O., Jung, C., Kim, J. J., Hong, J. H., Kim, H., Kim, J.-H., & Kil, J.-I. (2005). The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nature Biotechnology, 23(1), 63–68.Google Scholar
  20. 20.
    Rajnish, K., Choudhary, G. K., & Gunasekaran, P. (2008). Functional characterization of a putative endoglucanase gene in the genome of Zymomonas mobilis. Biotechnology Letters, 30(8), 1461–1467.Google Scholar
  21. 21.
    Amann, R. I., Ludwig, W., & Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143–169.Google Scholar
  22. 22.
    Todhanakasem, T., & Jittjang, S. (2016). Evaluation of cellulase production by Zymomonas mobilis. BioResources, 12, 1165–1178.Google Scholar
  23. 23.
    Stokes, H., Dally, E., Yablonsky, M., & Eveleigh, D. (1983). Comparison of plasmids in strains of Zymomonas mobilis. Plasmid, 9(2), 138–146.Google Scholar
  24. 24.
    Cao, Q.-H., Shao, H.-H., Qiu, H., Li, T., Zhang, Y.-Z., & Tan, X.-M. (2017). Using the CRISPR/Cas9 system to eliminate native plasmids of Zymomonas mobilis ZM4. Bioscience, Biotechnology, and Biochemistry, 81(3), 453–459.Google Scholar
  25. 25.
    Cao, Q., Li, T., Shao, H., Tan, X., & Zhang, Y. (2016). Three new shuttle vectors for heterologous expression in Zymomonas mobilis. Electronic Journal of Biotechnology, 19, 33–40.Google Scholar
  26. 26.
    Kanokratana, P., Eurwilaichitr, L., Pootanakit, K., & Champreda, V. (2015). Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation. Journal of Bioscience and Bioengineering, 119(4), 384–391.Google Scholar
  27. 27.
    Yanase, H., Kotani, T., & Tonomura, K. (1986). Transformation of Zymomonas mobilis with plasmid DNA. Agricultural and Biological Chemistry, 50, 3139–3144.Google Scholar
  28. 28.
    Sandkvist, M. (2001). Biology of type II secretion. Molecular Microbiology, 40(2), 271–283.Google Scholar
  29. 29.
    König, J., Grasser, R., Pikor, H., & Vogel, K. (2002). Determination of xylanase, ß-glucanase, and cellulase activity. Analytical and Bioanalytical Chemistry, 374(1), 80–87.Google Scholar
  30. 30.
    King, F. G., & Hossain, M. A. (1982). The effect of temperature, pH, and initial glucose concentration on the kinetics of ethanol production by Zymomonas mobilis in batch fermentation. Biotechnology Letters, 4(8), 531–536.Google Scholar
  31. 31.
    Yanase, H., Nozaki, K., & Okamoto, K. (2005). Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnology Letters, 27(4), 259–263.Google Scholar
  32. 32.
    Imman, S., Arnthong, J., Burapatana, V., Laosiripojana, N., & Champreda, V. (2013). Autohydrolysis of tropical agricultural residues by compressed liquid hot water pretreatment. Applied Biochemistry and Biotechnology, 170(8), 1982–1995.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Agro-Industry, Faculty of BiotechnologyAssumption UniversityBangkokThailand
  2. 2.National Center for Genetic Engineering and Biotechnology (BIOTEC)Klong LuangThailand
  3. 3.Institute of Molecular BiosciencesMahidol UniversitySalayaThailand

Personalised recommendations