Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 163–175 | Cite as

Reduction of Fumarate to Succinate Mediated by Fusobacterium varium

  • Nicholas C. McDonald
  • Robert L. WhiteEmail author


Accumulation of succinate as a fermentation product of Fusobacterium varium was enhanced when the anaerobic bacterium was grown on complex peptone medium supplemented with fumarate. Residual substrates and fermentation products were determined by proton NMR spectroscopy. Cells collected from the fumarate-supplemented medium (8–10 h after inoculation) supported the conversion of fumarate to succinate when suspended with fumarate and a co-substrate (glucose, sorbitol, or glycerol). Succinate production was limited by the availability of fumarate or reducing equivalents supplied by catabolism of a co-substrate via the Embden-Meyerhof-Parnas (EMP) pathway. The choice of reducing co-substrate influenced the yield of acetate and lactate as side products. High conversions of fumarate to succinate were achieved over pH 6.6–8.2 and initial fumarate concentrations up to 300 mM. However, at high substrate concentrations, intracellular retention of succinate reduced extracellular yields. Overall, the efficient utilization of fumarate (≤ 400 mM) combined with the significant extracellular accumulation of succinate (corresponding to ≥ 70% conversion) indicated the effective utilization of fumarate as a terminal electron acceptor by F. varium and the potential of the methodology for the bioproduction of succinate.


Biotransformation Bioconversion Fumaric acid reduction Succinic acid Fusobacterium varium Anaerobic metabolism Fermentation Cell suspensions Sorbitol Glycerol 



This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC grant RGPIN/04536-2014). NMR and mass spectra were collected on instruments provided by NMR-3 and the Mass Spectrometry Laboratory, respectively (Dalhousie University).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12010_2018_2817_MOESM1_ESM.docx (114 kb)
ESM 1 (DOCX 114 kb)


  1. 1.
    Jiang, M., Ma, J., Wu, M., Liu, R., Liang, L., Xin, F., Zhang, W., Jia, H., & Dong, W. (2017). Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies. Bioresource Technology, 245, 1710–1717.CrossRefGoogle Scholar
  2. 2.
    Mazière, A., Prinsen, P., García, A., Luque, R., & Len, C. (2017). A review of progress in (bio)catalytic routes from/to renewable succinic acid. Biofuels, Bioproducts & Biorefining, 11(5), 908–931.CrossRefGoogle Scholar
  3. 3.
    Ahn, J. H., Jang, Y.-S., & Lee, S. Y. (2016). Production of succinic acid by metabolically engineered microorganisms. Current Opinion in Biotechnology, 42, 54–66.CrossRefGoogle Scholar
  4. 4.
    Morales, M., Ataman, M., Badr, S., Linster, S., Kourlimpinis, I., Papadokonstantakis, S., Hatzimanikatis, V., & Hungerbühler, K. (2016). Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering. Energy & Environmental Science, 9(9), 2794–2805.CrossRefGoogle Scholar
  5. 5.
    Cao, Y., Zhang, R., Sun, C., Cheng, T., Liu, Y., & Xian, M. (2013). Fermentative succinate production: An emerging technology to replace the traditional petrochemical processes. BioMed Research International. Article ID 723412.
  6. 6.
    Delhomme, C., Weuster-Botz, D., & Kühn, F. E. (2009). Succinic acid from renewable resources as a C4 building-block chemical—A review of the catalytic possibilities in aqueous media. Green Chemistry, 11(1), 13–26.CrossRefGoogle Scholar
  7. 7.
    Cukalovic, A., & Stevens, C. V. (2008). Feasibility of production methods for succinic acid derivatives: A marriage of renewable resources and chemical technology. Biofuels, Bioproducts & Biorefining, 2(6), 505–529.CrossRefGoogle Scholar
  8. 8.
    Bechthold, I., Bretz, K., Kabasci, S., Kopitzky, R., & Springer, A. (2008). Succinic acid: A new platform chemical for biobased polymers from renewable resources. Chemical Engineering & Technology, 31(5), 647–654.CrossRefGoogle Scholar
  9. 9.
    McKinlay, J. B., Vieille, C., & Zeikus, J. G. (2007). Prospects for a bio-based succinate industry. Applied Microbiology and Biotechnology, 76(4), 727–740.CrossRefGoogle Scholar
  10. 10.
    Jansen, M. L. A., & van Gulik, W. M. (2014). Towards large scale fermentative production of succinic acid. Current Opinion in Biotechnology, 30, 190–197.CrossRefGoogle Scholar
  11. 11.
    Debabov, V. G. (2015). Prospects for biosuccinic acid production. Applied Biochemisty and Microbiology, 51(8), 787–791.CrossRefGoogle Scholar
  12. 12.
    Besson, M., Gallezot, P., & Pinel, C. (2014). Conversion of biomass into chemicals over metal catalysts. Chemical Reviews, 114(3), 1827−1870.CrossRefGoogle Scholar
  13. 13.
    Zhu, L.-W., & Tang, Y.-J. (2017). Current advances of succinate biosynthesis in metabolically engineered Escherichia coli. Biotechnology Advances, 35(8), 1040–1048.CrossRefGoogle Scholar
  14. 14.
    Beauprez, J. J., De Mey, M., & Soetaert, W. K. (2010). Microbial succinic acid production: Natural versus metabolic engineered producers. Process Biochemistry, 45(7), 1103–1114.CrossRefGoogle Scholar
  15. 15.
    Chen, Y., & Nielsen, J. (2016). Biobased organic acids production by metabolically engineered microorganisms. Current Opinion in Biotechnology, 37, 165–172.CrossRefGoogle Scholar
  16. 16.
    Thakker, C., Martínez, I., San, K.-Y., & Bennett, G. N. (2012). Succinate production in Escherichia coli. Biotechnology Journal, 7(2), 213–224.CrossRefGoogle Scholar
  17. 17.
    Cheng, K.-K., Wang, G.-Y., Zeng, J., & Zhang, J.-A. (2013). Improved succinate production by metabolic engineering. BioMed Research International. Article ID 538790.
  18. 18.
    Li, C., Yang, X., Gao, S., Wang, H., & Lin, C. S. K. (2017). High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica. Bioresource Technology, 225, 9–16.CrossRefGoogle Scholar
  19. 19.
    Ryu, H.-W., Kang, K.-H., & Yun, J.-S. (1999). Bioconversion of fumarate to succinate using glycerol as a carbon source. Applied Biochemistry and Biotechnology, 78(1–3), 511–520.CrossRefGoogle Scholar
  20. 20.
    Kang, K.-H., Yun, J.-S., & Ryu, H.-W. (2000). Effect of culture conditions on the production of succinate by Enterococcus faecalis RKY1. Journal of Microbiology and Biotechnology, 10(1), 1–7.Google Scholar
  21. 21.
    Ryu, H.-W., & Wee, Y.-J. (2001). Characterization of bioconversion of fumarate to succinate by alginate immobilized Enterococcus faecalis RKY1. Applied Biochemistry and Biotechnology, 91–93(1–9), 525–535.CrossRefGoogle Scholar
  22. 22.
    Wee, Y.-J., Yun, J.-S., Kang, K.-H., & Ryu, H.-W. (2002). Continuous production of succinic acid by a fumarate-reducing bacterium immobilized in a hollow-fiber bioreactor. Applied Biochemistry and Biotechnology, 98–100(1–9), 1093–1104.CrossRefGoogle Scholar
  23. 23.
    Resmer, K. L., & White, R. L. (2011). Metabolic footprinting of the anaerobic bacterium Fusobacterium varium using 1H NMR spectroscopy. Molecular BioSystems, 7(7), 2220–2227.CrossRefGoogle Scholar
  24. 24.
    Hofstad, T. (2006). The prokaryotes: A Handbook on the Biology of Bacteria. In S. Falkow, E. Rosenberg, & K.-H. Schleifer (Eds.), The genus Fusobacterium (Vol. 7, pp. 1016–1027). New York: Springer.Google Scholar
  25. 25.
    Ramezani, M., Resmer, K. L., & White, R. L. (2011). Glutamate racemization and catabolism in Fusobacterium varium. The FEBS Journal, 278(14), 2540–2551.CrossRefGoogle Scholar
  26. 26.
    Potrykus, J., White, R. L., & Bearne, S. L. (2008). Proteomic investigation of amino acid catabolism in the indigenous gut anaerobe Fusobacterium varium. Proteomics, 8(13), 2691–2703.CrossRefGoogle Scholar
  27. 27.
    Potrykus, J., Mahaney, B., White, R. L., & Bearne, S. L. (2007). Proteomic investigation of glucose metabolism in the butyrate-producing gut anaerobe Fusobacterium varium. Proteomics, 7(11), 1839–1853.CrossRefGoogle Scholar
  28. 28.
    Ramezani, M., & White, R. L. (2011). Enantioselective catabolism of racemic serine: Preparation of d-serine using whole cells of Fusobacterium nucleatum. Tetrahedron: Asymmetry, 22(13), 1473–1478.CrossRefGoogle Scholar
  29. 29.
    LeBlanc, L. M., Powers, S. W., Grossert, J. S., & White, R. L. (2016). Competing fragmentation processes of β-substituted propanoate ions upon collision-induced dissociation. Rapid Communications in Mass Spectrometry, 30(19), 2133–2144.CrossRefGoogle Scholar
  30. 30.
    Sekizuka, T., Ogasawara, Y., Ohkusa, T., & Kuroda, M. (2017). Characterization of Fusobacterium varium Fv113-g1 isolated from a patient with ulcerative colitis based on complete genome sequence and transcriptome analysis. PLoS One, 12(12), e0189319.CrossRefGoogle Scholar
  31. 31.
    F. varium genomes. Available from Accessed 5 March 2018.
  32. 32.
    Li, Q.-Z., Jiang, X.-L., Feng, X.-J., Wang, J.-M., Sun, C., Zhang, H.-B., Xian, M., & Liu, H.-Z. (2016). Recovery processes of organic acids from fermentation broths in the biomass-based industry. Journal of Microbiology and Biotechnology, 26(1), 1–8.CrossRefGoogle Scholar
  33. 33.
    Doelle, H. W. (1975). Bacterial metabolism (2nd ed.pp. 269–270). New York: Academic Press.Google Scholar
  34. 34.
    Clomburg, J. M., & Gonzalez, R. (2013). Anaerobic fermentation of glycerol: A platform for renewable fuels and chemicals. Trends in Biotechnology, 31(1), 20–28.CrossRefGoogle Scholar
  35. 35.
    Khanna, S., Goyal, A., & Moholkar, V. S. (2012). Microbial conversion of glycerol: Present status and future prospects. Critical Reviews in Biotechnology, 32(3), 235–262.CrossRefGoogle Scholar
  36. 36.
    Lancaster, C. R. D. (2001). Succinate:Quinone oxidoreductases – What can we learn from Wolinella succinogenes quinol:Fumarate reductase? FEBS Letters, 504(3), 133–141.CrossRefGoogle Scholar
  37. 37.
    Chung, S.-C., Park, J.-S., Yun, J., & Park, J. H. (2017). Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum. Metabolic Engineering, 40, 157–164.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryDalhousie UniversityHalifaxCanada

Personalised recommendations