Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 194–210 | Cite as

Exploring the Lead Compounds for Zika Virus NS2B-NS3 Protein: an e-Pharmacophore-Based Approach

  • K. Rohini
  • Pratika Agarwal
  • B. Preethi
  • V. Shanthi
  • K. RamanathanEmail author
Article
  • 228 Downloads

Abstract

The rapid spread of the Zika virus and its association with the abnormal brain development constitute a global health emergency. With a continuing spread of the mosquito vector, the exposure is expected to accelerate in the coming years. Despite number of efforts, there is still no proper vaccine or medicine to combat this virus. Of note, the NS2B-NS3 protein is proven to be the potential target for the Zika virus therapeutics. Hence, e-pharmacophore-based drug design strategy was employed to identify potent inhibitors of NS2B-NS3 protein from ASINEX database consisting of 467,802 molecules. A 3D e-pharmacophore model was generated using PHASE module of Schrödinger Suite. The generated model consists of one hydrogen bond acceptor (A), two hydrogen bond donors (D), and two aromatic rings (R), ADDRR. The model was further evaluated for its ability to screen actives using enrichment analysis. Subsequently, high-throughput virtual screening protocol was employed, and the resultant hit molecules were also examined for its binding free energies and ADME properties using Prime MM-GBSA and Qikprop module of Schrodinger packages, respectively. Finally, the screened hit molecule was subjected to molecular dynamics simulation to examine its stability. Overall, the results from our analysis suggest that compound BAS 19192837 could be a potent inhibitor for the NS2B-NS3 protein of the Zika virus. It is also noteworthy to mention that our results are in good agreement with literature evidences. We hope that this result is of immense importance in designing potential drug molecules to combat the spread of Zika virus in the near future.

Keywords

Zika virus Virtual screening Enrichment analysis ASINEX database Prime MM-GBSA Molecular simulation 

Notes

Acknowledgements

The authors gratefully acknowledge Vellore Institute of Technology, Vellore for the support through Seed Grant for Research.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Bollati, M., Alvarez, K., Assenberg, R., Baronti, C., Canard, B., & Cook, S. (2010). Structure and functionality in flavivirus NS-proteins: Perspectives for drug design. Antiviral Research, 87(2), 125–148.Google Scholar
  2. 2.
    Faye, O., Freire, C. C., Iamarino, A., Faye, O., de Oliveira, J. V., Diallo, M., Zanotto, P. M., & Sall, A. A. (2014). Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Neglected Tropical Diseases, 8(1), e2636.Google Scholar
  3. 3.
    Dejnirattisai, W., Supasa, P., Wongwiwat, W., Rouvinski, A., Barba-Spaeth, G., Duangchinda, T., Sakuntabhai, A., Cao-Lormeau, V. M., Malasit, P., Rey, F. A., Mongkolsapaya, J., & Screaton, G. R. (2016). Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nature Immunology, 17(9), 1102–1108.Google Scholar
  4. 4.
    Aguirre, S., Maestre, A. M., Pagni, S., Patel, J. R., Savage, T., Gutman, D., Maringer, K., Bernal-Rubio, D., Shabman, R. S., Simon, V., Rodriguez-Madoz, J. R., Mulder, L. C., Barber, G. N., & Fernandez-Sesma, A. (2012). DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathogens, 8(10), e1002934.Google Scholar
  5. 5.
    Duffy, M. R., Chen, T. H., Hancock, W. T., Powers, A. M., Kool, J. L., & Lanciotti, R. S. (2009). Zika virus outbreak on Yap Island, Federated States of Micronesia. The New England Journal of Medicine, 360(24), 2536–2543.Google Scholar
  6. 6.
    Mlakar, J., Korva, M., Tul, N., Popovic, M., Poljsak-Prijatelj, M., Mraz, J., Kolenc, M., ResmanRus, K., VesnaverVipotnik, T., & FabjanVodusek, V. (2016). Zika virus associated with microcephaly. The New England Journal of Medicine, 374(10), 951–958.Google Scholar
  7. 7.
    Li, C., Xu, D., Ye, Q., Hong, S., Jiang, Y., Liu, X., Zhang, N., Shi, L., Qin, C. F., & Xu, Z. (2016). Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell, 19(1), 120–126.Google Scholar
  8. 8.
    Cugola, F. R., Fernandes, I. R., Russo, F. B., Freitas, B. C., Dias, J. L., Guimarães, K. P., Benazzato, C., Almeida, N., Pignatari, G. C., Romero, S., Polonio, C. M., Cunha, I., Freitas, C. L., Brandão, W. N., Rossato, C., Andrade, D. G., FariaDde, P., Garcez, A. T., Buchpigel, C. A., Braconi, C. T., Mendes, E., Sall, A. A., Zanotto, P. M., Peron, J. P., Muotri, A. R., & Beltrão-Braga, P. C. (2016). The Brazilian Zika virus strain causes birth defects in experimental models. Nature, 534(7606), 267–271.Google Scholar
  9. 9.
    Vogel, G. (2016). INFECTIOUS DISEASE. Experts fear Zika's effects may be even worse than thought. Science, 352(6292), 1375–1376.Google Scholar
  10. 10.
    Paixao, E. S., Barreto, F., da Gloria Teixeira, M., da Conceicao, N. C. M., & Rodrigues, L. C. (2016). History, epidemiology, and clinical manifestations of Zika: A systematic review. American Journal of Public Health, 106, 606e612.Google Scholar
  11. 11.
    Fauci, A. S., & Morens, D. M. (2016). Zika virus in the Americas - yet another arbovirus threat. The New England Journal of Medicine, 374(7), 601–604.Google Scholar
  12. 12.
    Preethi, B., Shanthi, V., & Ramanathan, K. (2015). Investigation of nalidixic acid resistance mechanism in Salmonella enterica using molecular simulation techniques. Applied Biochemistry and Biotechnology, 177(2), 528–540.Google Scholar
  13. 13.
    Rohini, K., & Shanthi, V. (2018). Discovery of potent neuraminidase inhibitors using a combination of pharmacophore-based virtual screening and molecular simulation approach. Applied Biochemistry and Biotechnology, 184, 1421–1440.Google Scholar
  14. 14.
    James, N., Shanthi, V., & Ramanathan, K. (2018). Drug design for ALK-positive NSCLC: An integrated pharmacophore-based 3D QSAR and virtual screening strategy. Applied Biochemistry and Biotechnology, 185(1), 289–315.Google Scholar
  15. 15.
    Saxena, S., Devi, P. B., Soni, V., Yogeeswari, P., & Sriram, D. (2014). Identification of novel inhibitors against Mycobacterium tuberculosisl-alanine dehydrogenase (MTB-AlaDH) through structure-based virtual screening. Journal of Molecular Graphics and Modelling., 47, 37–43.Google Scholar
  16. 16.
    Arya, H., & Coumar, M. S. (2014). Virtual screening of traditional Chinese medicine (TCM) database: Identification of fragment-like lead molecules for filariasis target asparaginyl-tRNA synthetase. Journal of Molecular Modeling, 20(6), 2266.Google Scholar
  17. 17.
    Swaminathan, P., & Saleena, L. (2017). Evaluation of Cardiospermum halicacabum leaf compounds against human Dihydro Orotate dehydrogenase: A target for rheumatoid arthritis using structure based drug designing. Journal of Applied Pharmaceutical Science, 7, 48–61.Google Scholar
  18. 18.
    James, N., & Ramanathan, K. (2018). Ligand-based pharmacophore screening strategy: A pragmatic approach for targeting HER proteins. Applied Biochemistry and Biotechnology.  https://doi.org/10.1007/s12010-018-2724-4.
  19. 19.
    Mirza, S. B., Lee, R. C. H., Chu, J. J. H., Salmas, R. E., Mavromoustakos, T., & Durdagi, S. (2018). Discovery of selective dengue virus inhibitors using combination of molecular fingerprint-based virtual screening protocols, structure-based pharmacophore model development, molecular dynamics simulations and in vitro studies. Journal of Molecular Graphics and Modelling, 79, 88–102.Google Scholar
  20. 20.
    Wei, Y., Li, J., Qing, J., Huang, M., Wu, M., Gao, F., Li, D., Hong, Z., Kong, L., Huang, W., & Lin, J. (2016). Discovery of novel hepatitis C virus NS5B polymerase inhibitors by combining random forest, multiple e-pharmacophore modeling and docking. PLoS One, 11(2), e0148181.Google Scholar
  21. 21.
    Pérez-Regidor, L., Zarioh, M., Ortega, L., & Martín-Santamaría, S. (2016). Virtual screening approaches towards the discovery of toll-like receptor modulators. International Journal of Molecular Sciences, 17(9), 1508.Google Scholar
  22. 22.
    Driessche, G., & Fourches, D. (2017). Adverse drug reactions triggered by the common HLA-B*57:01 variant: a molecular docking study. Journal of Cheminformatics, 9(1), 13.Google Scholar
  23. 23.
    Banerjee, K., Gupta, U., Gupta, S., Wadhwa, G., Gabrani, R., Sharma, S. K., & Jain, C. K. (2011). Molecular docking of glucosamine-6-phosphate synthase in Rhizopusoryzae. Bioinformation, 7(6), 285–290.Google Scholar
  24. 24.
    Ramatenki, V., Dumpati, R., Vadija, R., Vellanki, S., Potlapally, S. R., Rondla, R., & Vuruputuri, U. (2017). Identification of new lead molecules against UBE2NL enzyme for cancer therapy. Applied Biochemistry and Biotechnology, 182(4), 1497–1517.Google Scholar
  25. 25.
    Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc, 110(6), 1657–1666.Google Scholar
  26. 26.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.Google Scholar
  27. 27.
    De Falco, F., Di Giovanni, C., Cerchia, C., De Stefano, D., Capuozzo, A., Irace, C., Iuvone, T., Santamaria, R., Carnuccio, R., & Lavecchia, A. (2016). Novel non-peptide small molecules preventing IKKß/NEMO association inhibit NF- κB activation in LPS-stimulated J774 macrophages. Biochemical Pharmacology, 104, 83–94.Google Scholar
  28. 28.
    Kalliokoski, T., Salo, H. S., Lahtela-Kakkonen, M., & Poso, A. (2009). The effect of ligand-based tautomer and protomer prediction on structure-based virtual screening. Journal of Chemical Information and Modeling, 49(12), 2742–2748.Google Scholar
  29. 29.
    Sadowski, J., Rudolph, C., & Gasteiger, J. (1992). The generation of 3D models of host–guest complexes. Analytica Chimica Acta, 265, 233–241.Google Scholar
  30. 30.
    Lanciotti, R. S., Kosoy, O. L., Laven, J. J., Velez, J. O., Lambert, A. J., & Johnson, A. J. (2008). Genetic and serologic properties of Zika virus associated with an epidemic, yap state, Micronesia. Emerging Infectious Diseases, 14(8), 1232–1239.Google Scholar
  31. 31.
    Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., & Klicic, J. J. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749.Google Scholar
  32. 32.
    Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein− ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196.Google Scholar
  33. 33.
    Yoo, J., & Medina-Franco, J. L. (2011). Homology modeling, docking and structure-based pharmacophore of inhibitors of DNA methyltransferase. Journal of Computer-Aided Molecular Design, 25(6), 555–567.Google Scholar
  34. 34.
    Carlson, H. A., Masukawa, K. M., & McCammon, J. A. (1999). Method for including the dynamic fluctuations of a protein in computer-aided drug design. The Journal of Physical Chemistry. A, 103(49), 10213–10219.Google Scholar
  35. 35.
    Muthusamy, K., Singh, K. D., Chinnasamy, S., Nagamani, S., Krishnasamy, G., Thiyagaraja, C., Premkumar, P., & Anusuyadevi, M. (2013). High throughput virtual screening and E-pharmacophore filtering in the discovery of new BACE-1inhibitors. Interdisciplinary Sciences, 5(2), 119–126.Google Scholar
  36. 36.
    Wang, H., Aslanian, R., & Madison, V. S. (2008). Induced fit docking of momestasonefuroate and further evidence for glucocorticoid receptor 17 [alpha] pocket flexibility. Journal of Molecular Graphics, 27, 512–521.Google Scholar
  37. 37.
    Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A newapproach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759.Google Scholar
  38. 38.
    Rajamanikandan, S., Jeyakanthan, J., & Srinivasan, P. (2017). Molecular docking, molecular dynamics simulations, computational screening to design quorum sensing inhibitors targeting LuxP of Vibrio harveyi and its biological evaluation. Applied Biochemistry and Biotechnology, 181(1), 192–218.Google Scholar
  39. 39.
    Truchon, J. F., & Bayly, C. I. (2007). Evaluating virtual screening methods: Good and bad metrics for the “early recognition” problem. Journal of Chemical Information and Modeling, 47(2), 488–508.Google Scholar
  40. 40.
    Pinheiro, A. S., Duarte, J. B. C., Alves, C. N., & de Molfetta, F. A. (2015). Virtual screening and molecular dynamics simulations from a bank of molecules of the Amazon region against functional NS3-4A protease-helicase enzyme of hepatitis C virus. Applied Biochemistry and Biotechnology, 176(6), 1709–1721.Google Scholar
  41. 41.
    Gupta, K. K., Sethi, G., & Jayaraman, M. (2016). Molecular docking and simulation studies of gustatory receptor of Aedesaegypti: A potent drug target to distract host-seeking behaviour in mosquitoes. Journal of Vector Borne Diseases, 53(2), 179–184.Google Scholar
  42. 42.
    Jorgensen, W. L., Maxwell, D. S., & Tirado Rives, J. (1996). Development and testing of the OPLS ALL atoms force field on conformation energetics and properties of organic liquids. Journal of American Chemical Society, 118(45), 11225–11236.Google Scholar
  43. 43.
    Mobley, D. L., & Dill, K. A. (2009). Binding of small-molecule ligands to proteins:“what you see” is not always “what you get”. Structure, 17(4), 489–498.Google Scholar
  44. 44.
    Cappel, D., Hall, M. L., Lenselink, E. B., Beuming, T., Qi, J., Bradner, J., & Sherman, W. (2016). Relative binding free energy calculations applied to protein homology models. Journal of Chemical Information and Modeling, 56(12), 2388–2400.Google Scholar
  45. 45.
    Muralidharan, A. R., Selvaraj, C., Singh, S., Nelson Jesudasan, C. A., Geraldine, P., & Thomas, P. (2014). Virtual screening based on pharmacophoric features of known calpain inhibitors to identify potent inhibitors of calpain. Medicinal Chemistry Research, 23(5), 2445–2455.Google Scholar
  46. 46.
    Ash, J., & Fourches, D. (2017). Characterizing the chemical space of ERK2 kinase inhibitors using descriptors computed from molecular dynamics trajectories. Journal of Chemical Information and Modeling, 57(6), 1286–1299.Google Scholar
  47. 47.
    Yadav, A., Sharma, S., & Yadav, V. K. (2016). Non-covalent carriage of anticancer agents by humanized antibody trastuzumab. Journal of Molecular Modeling, 22(5), 112.Google Scholar
  48. 48.
    Meng, F., Cheng, S., Ding, H., Liu, S., Liu, Y., Zhu, K., Chen, S., Lu, J., Xie, Y., Li, L., Liu, R., Shi, Z., Zhou, Y., Liu, Y. C., Zheng, M., Jiang, H., Lu, W., Liu, H., & Luo, C. (2015). Discovery and optimization of novel, selective histone methyltransferase SET7 inhibitors by pharmacophore- and docking-based virtual screening. Journal of Medicinal Chemistry, 58(20), 8166–8181.Google Scholar
  49. 49.
    Kumari, M., Chandra, S., Tiwari, N., & Subbarao, N. (2016). 3D QSAR, pharmacophore and molecular docking studies of known inhibitors and designing of novel inhibitors for M18 aspartylaminopeptidase of plasmodium falciparum. BMC Structural Biology, 16(1), 12.Google Scholar
  50. 50.
    Kandakatla, N., Ramakrishnan, G., Karthikeyan, J., & Chekkara, R. (2014). Pharmacophore modeling, atom based 3D-QSAR and docking studies of Chalcone derivatives as tubulin inhibitors. Oriental Journal of Chemistry, 30(3), 1083–1098.Google Scholar
  51. 51.
    Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening:1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 52, 2587–2598.Google Scholar
  52. 52.
    Pradeep, N., Munikumar, M., Swargam, S., Hema, K., & Sudheer Kumar, K. (2015). Combination of e-pharmacophore modeling, multiple docking strategies and molecular dynamic simulations to discover of novel antagonists of BACE1. Journal of Biomolecular Structure & Dynamics, 1, 129–130.Google Scholar
  53. 53.
    Pradhan, D., Priyadarshini, V., Munikumar, M., Swargam, S., & Umamaheswari, A. (2014). Para-(benzoyl)-phenylalanine as a potential inhibitor against LpxC of Leptospira spp.: Homology modeling, docking, and molecular dynamics study. Journal of Biomolecular Structure & Dynamics, 32(2), 171–185.Google Scholar
  54. 54.
    Darvas, F., Keseru, G., Papp, A., Dormán, G., Urge, L., & Krajcsi, P. (2002). In silico and Exsilico ADME approaches for drug discovery. Current Topics in Medicinal Chemistry, 2(12), 1287–1304.Google Scholar
  55. 55.
    Chikan, N. A., Bhavaniprasad, V., Anbarasu, K., Shabir, N., & Patel, T. N. (2013). From natural products to drugs for epimutation computer-aided drug design. Applied Biochemistry and Biotechnology, 170(1), 164–175.Google Scholar
  56. 56.
    Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341.Google Scholar
  57. 57.
    Shukla, S., Srivastava, R. S., Shrivastava, S. K., Sodhi, A., & Kumar, P. (2012). Synthesis, characterization and antiproliferative activity of 1, 2-naphthoquinone and its derivatives. Applied Biochemistry and Biotechnology, 167(5), 1430–1445.Google Scholar
  58. 58.
    Gaddaguti, V., Venkateswara Rao, T., & Prasada Rao, A. (2016). Potential mosquito repellent compounds of Ocimum species against 3N7H and 3Q8I of Anopheles gambiae. 3 Biotech, 6(1), 26.Google Scholar
  59. 59.
    Brüstle, M., Beck, B., Schindler, T., King, W., Mitchell, T., & Clark, T. (2002). Descriptors, physical properties, and drug-likeness. Journal of Medicinal Chemistry, 45(16), 3345–3355.Google Scholar
  60. 60.
    Zhou, W., Wang, Y., Lu, A., & Zhang, G. (2016). Systems pharmacology in small molecular drug discovery. International Journal of Molecular Sciences, 17(2), 246.Google Scholar
  61. 61.
    Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.Google Scholar
  62. 62.
    Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., & Varma, A. K. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One, 5(8), e12029.Google Scholar
  63. 63.
    Lei, J., Hansen, G., Nitsche, C., Klein, C. D., Zhang, L., & Hilgenfeld, R. (2016). Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science, 353(6298), 503–505.Google Scholar
  64. 64.
    Saudi, M., Zmurko, J., Kaptein, S., Rozenski, J., Neyts, J., & Van Aerschot, A. (2014). Synthesis and evaluation of imidazole-4, 5-and pyrazine-2, 3-dicarboxamides targeting dengue and yellow fever virus. European Journal of Medicinal Chemistry, 87, 529–539.Google Scholar
  65. 65.
    Zhang, N., Chen, H. M., Koch, V., Schmitz, H., Liao, C. L., Bretner, M., Bhadti, V. S., Fattom, A. I., Naso, R. B., Hosmane, R. S., & Borowski, P. (2003). Ring-expanded (“fat”) nucleoside and nucleotide analogues exhibit potent in vitro activity against flaviviridae NTPases/helicases, including those of the West Nile virus, hepatitis C virus, and Japanese encephalitis virus. Journal of Medicinal Chemistry, 46(19), 4149–4164.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biotechnology, School of Bio Sciences and TechnologyVellore Institute of TechnologyVelloreIndia

Personalised recommendations