Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 140–151 | Cite as

Influence of Added Nutrients and Substrate Concentration in Biohydrogen Production from Winery Wastewaters Coupled to Methane Production

  • Julián Carrillo-Reyes
  • Blanca Aidé Albarrán-Contreras
  • Germán BuitrónEmail author
Article

Abstract

Winery wastewaters are acidic effluents with high content of organic matter and nutrients. Different initial values of chemical oxygen demand (COD), ranging from 4 to 50 g L−1, were tested in batch assays to evaluate the fermentative hydrogen production followed by a methane production step. The influence of adding a typical nutrient solution for hydrogen production was investigated. Nutrients include N–NH4, Mg, Fe, Co, Mn, I, Ni, and Zn. The best hydrogen production potential was obtained at a COD of 50 g L−1 without nutrient addition. This condition produced 528 mL H2 L−1. At a COD ≥ 35 g L−1, tests with only WW had a hydrogen potential 1.6 to 1.9 times higher than did tests where nutrients were added. The use of added nutrients reduced the hydrogen production by producing additional reduced acids, such as propionate and valerate. In a second stage, biomethane potential was evaluated using the effluent of a selected condition from hydrogen production tests. The methane production reached values of 207 ± 2.2 mL CH4 g−1 COD at 10 g COD L−1. The COD affected the specific methane production. The results of this study demonstrated the potential of winery effluents as a substrate for sequential hydrogen and methane production to increase the energy recovery from this effluent, with a maximum energetic yield and productivity of 7.15 kJ gCOD−1 and 11.51 kJ d−1.

Keywords

Biohydrogen Biogas Winery wastewater Dark fermentation Methane Caproic acid 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of the projects Fondo de Sustentabilidad Energética SENER-CONACYT, Clúster Biocombustibles Gaseosos, 247006 and CONACYT 255537. The technical assistance of Karen Daniela Ramírez Martínez, Gloria Moreno, Jaime Pérez, and Ángel A. Hernández is also acknowledged.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bustamante, M. A., Paredes, C., Moral, R., Moreno-Caselles, J., Pérez-Espinosa, A., & Pérez-Murcia, M. D. (2005). Uses of winery and distillery effluents in agriculture: characterisation of nutrient and hazardous components. Water Science and Technology, 51(1), 145–151.Google Scholar
  2. 2.
    Wine Institute. (2017). World statistics—world wine production by country. Accessed on 15 Jan 2018. Retrieved from http://www.wineinstitute.org/files/World_Wine_Production_by_Country_2015.pdf.
  3. 3.
    Lucas, M. S., Peres, J. A., & Puma, G. L. (2010). Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics. Separation and Purification Technology, 72(3), 235–241.  https://doi.org/10.1016/j.seppur.2010.01.016.Google Scholar
  4. 4.
    Pérez, M., Romero, L. I., & Sales, D. (1997). Thermophilic anaerobic degradation of distillery wastewater in continuous-flow fluidized bed bioreactors. Biotechnology Progress, 13(1), 33–38.  https://doi.org/10.1021/bp9600795.Google Scholar
  5. 5.
    Andreottola, G., Foladori, P., & Ziglio, G. (2009). Biological treatment of winery wastewater: an overview. Water Science and Technology, 60(5), 1117–1125.Google Scholar
  6. 6.
    Da Ros, C., Cavinato, C., Pavan, P., & Bolzonella, D. (2017). Mesophilic and thermophilic anaerobic co-digestion of winery wastewater sludge and wine lees: an integrated approach for sustainable wine production. Journal of Environmental Management, 203(Pt 2), 745–752.  https://doi.org/10.1016/j.jenvman.2016.03.029.Google Scholar
  7. 7.
    Petta, L., De Gisi, S., Casella, P., Farina, R., & Notarnicola, M. (2017). Evaluation of the treatability of a winery distillery (vinasse) wastewater by UASB, anoxic-aerobic UF-MBR and chemical precipitation/adsorption. Journal of Environmental Management, 201, 177–189.  https://doi.org/10.1016/j.jenvman.2017.06.042.Google Scholar
  8. 8.
    Solera, R., Romero, L. I., & Sales, D. (2002). The evolution of biomass in a two-phase anaerobic treatment process during start-up. Chemical and Biochemical Engineering Quarterly, 16, 25–29.Google Scholar
  9. 9.
    Kalyuzhnyi, S. V., Gladchenko, M. A., Sklyar, V. I., Kizimenko, Y. S., & Shcherbakov, S. S. (2001). One- and two-stage upflow anaerobic sludge-bed reactor pretreatment of winery wastewater at 4–10°C. Applied Biochemistry and Biotechnology, 90(2), 107–124.  https://doi.org/10.1385/ABAB:90:2:107.Google Scholar
  10. 10.
    Hernández-Mendoza, C. E., & Buitrón, G. (2013). Suppression of methanogenic activity in anaerobic granular biomass for hydrogen production. Journal of Chemical Technology and Biotechnology, 89(1), 143–149.  https://doi.org/10.1002/jctb.4143.Google Scholar
  11. 11.
    Carrillo-Reyes, J., Celis, L. B., Alatriste-Mondragón, F., Montoya, L., & Razo-Flores, E. (2014). Strategies to cope with methanogens in hydrogen producing UASB reactors: community dynamics. International Journal of Hydrogen Energy, 39(22), 11423–11432.  https://doi.org/10.1016/j.ijhydene.2014.05.099.Google Scholar
  12. 12.
    Das, D. (2009). Advances in biohydrogen production processes: an approach towards commercialization. International Journal of Hydrogen Energy, 34(17), 7349–7357.  https://doi.org/10.1016/j.ijhydene.2008.12.013.Google Scholar
  13. 13.
    Bolzonella, D., Battista, F., Cavinato, C., Gottardo, M., Micolucci, F., Lyberatos, G., & Pavan, P. (2018). Recent developments in biohythane production from household food wastes: a review. Bioresource Technology, 257, 311–319.  https://doi.org/10.1016/j.biortech.2018.02.092.Google Scholar
  14. 14.
    Ojeda, F., Bakonyi, P., & Buitrón, G. (2017). Improvement of methane content in a hydrogenotrophic anaerobic digester via the proper operation of membrane module integrated into an external-loop. Bioresource Technology, 245(Pt A), 1294–1298.  https://doi.org/10.1016/j.biortech.2017.08.183.Google Scholar
  15. 15.
    Buitrón, G., Prato-Garcia, D., & Zhang, A. (2014). Biohydrogen production from tequila vinasses using a fixed bed reactor. Water Science and Technology, 70(12), 1919–1925.  https://doi.org/10.2166/wst.2014.433.Google Scholar
  16. 16.
    Yu, H., Zhu, Z., Hu, W., & Zhang, H. (2002). Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. International Journal of Hydrogen Energy, 27(11-12), 1359–1365.  https://doi.org/10.1016/S0360-3199(02)00073-3.Google Scholar
  17. 17.
    Krysteva, M., Lalov, I., & Beschkov, V. (2010). Acceleration and increase of hydrogen production by simultaneous fermentation of Clostridium butyricum and Rhodobacter sphaeroides on wine-vinasse substrate. Bulgarian Chemical Communications, 42, 46–50.Google Scholar
  18. 18.
    Vlyssides, A. G., Barampouti, E. M., & Mai, S. (2005). Wastewater characteristics from Greek wineries and distilleries. Water Science and Technology, 51(1), 53–60.Google Scholar
  19. 19.
    Devesa-Rey, R., Vecino, X., Varela-Alende, J. L., Barral, M. T., Cruz, J. M., & Moldes, A. B. (2011). Valorization of winery waste vs. the costs of not recycling. Waste Management, 31(11), 2327–2335.  https://doi.org/10.1016/j.wasman.2011.06.001.Google Scholar
  20. 20.
    Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L., & Noike, T. (2000). Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technology, 73(1), 59–65.  https://doi.org/10.1016/S0960-8524(99)00130-3.Google Scholar
  21. 21.
    APHA/AWWA/WFE. (2005). Standard methods for the examination of water and wastewater. 21th edn, Washington DC, USA.Google Scholar
  22. 22.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.Google Scholar
  23. 23.
    López-López, A., Davila-Vazquez, G., León-Becerril, E., Villegas-García, E., & Gallardo-Valdez, J. (2010). Tequila vinasses: generation and full scale treatment processes. Reviews in Environmental Science and Biotechnology, 9(2), 109–116.  https://doi.org/10.1007/s11157-010-9204-9.Google Scholar
  24. 24.
    Ferraz Júnior, A. D. N., Wenzel, J., Etchebehere, C., & Zaiat, M. (2014). Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. International Journal of Hydrogen Energy, 39(30), 16852–16862.  https://doi.org/10.1016/j.ijhydene.2014.08.017.Google Scholar
  25. 25.
    Sreethawong, T., Chatsiriwatana, S., Rangsunvigit, P., & Chavadej, S. (2010). Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: effects of operational parameters, COD:N ratio, and organic acid composition. International Journal of Hydrogen Energy, 35(9), 4092–4102.  https://doi.org/10.1016/j.ijhydene.2010.02.030.Google Scholar
  26. 26.
    Fuess, L. T., Mazine Kiyuna, L. S., Garcia, M. L., & Zaiat, M. (2016). Operational strategies for long-term biohydrogen production from sugarcane stillage in a continuous acidogenic packed-bed reactor. International Journal of Hydrogen Energy, 41(19), 8132–8145.  https://doi.org/10.1016/j.ijhydene.2015.10.143.Google Scholar
  27. 27.
    Moreno-Andrade, I., Moreno, G., Gopalakrishnan, K., & Buitrón, G. (2015). Biohydrogen production from industrial wastewaters. Water Science and Technology, 71(1), 105–110.  https://doi.org/10.2166/wst.2014.471.Google Scholar
  28. 28.
    Ho, K.-L., Chen, Y.-Y., & Lee, D.-J. (2010). Biohydrogen production from cellobiose in phenol and cresol-containing medium using Clostridium sp. R1. International Journal of Hydrogen Energy, 35(19), 10239–10244.  https://doi.org/10.1016/j.ijhydene.2010.07.155.Google Scholar
  29. 29.
    Bundhoo, M. A. Z., & Mohee, R. (2016). Inhibition of dark fermentative bio-hydrogen production: a review. International Journal of Hydrogen Energy, 41(16), 6713–6733.  https://doi.org/10.1016/j.ijhydene.2016.03.057.Google Scholar
  30. 30.
    Agler, M. T., Spirito, C. M., Usack, J. G., Werner, J. J., & Angenent, L. T. (2012). Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy & Environmental Science, 5(8), 8189–8192.  https://doi.org/10.1039/C2EE22101B.Google Scholar
  31. 31.
    Seedorf, H., Fricke, W. F., Veith, B., Brüggemann, H., Liesegang, H., Strittmatter, A., Miethke, M., Buckel, W., Hinderberger, J., Li, F., Hagemeier, C., Thauer, R. K., & Gottschalk, G. (2008). The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proceedings of the National Academy of Sciences, 105(6), 2128–2133.  https://doi.org/10.1073/pnas.0711093105.Google Scholar
  32. 32.
    Ruíz, C., Torrijos, M., Sousbie, P., Martínez, J. L., Moletta, R., & Delgenès, J. P. (2002). Treatment of winery wastewater by an anaerobic sequencing batch reactor. Water Science and Technology, 45(10), 219–224.Google Scholar
  33. 33.
    Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., & Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2252.  https://doi.org/10.2166/wst.2016.336.Google Scholar
  34. 34.
    Moletta, R. (2005). Winery and distillery wastewater treatment by anaerobic digestion. Water Science and Technology, 51(1), 137–144.Google Scholar
  35. 35.
    Peixoto, G., Pantoja-Filho, J. L. R., Bolzan Agnelli, J. A., Barboza, M., & Zaiat, M. (2012). Hydrogen and methane production, energy recovery, and organic matter removal from effluents in a two-stage fermentative process. Applied Biochemistry and Biotechnology, 168(3), 651–671.  https://doi.org/10.1007/s12010-012-9807-4.Google Scholar
  36. 36.
    Buitrón, G., Kumar, G., Martinez-Arce, A., & Moreno, G. (2014). Hydrogen and methane production via a two-stage processes (H2-SBR + CH4-UASB) using tequila vinasses. International Journal of Hydrogen Energy, 39(33), 19249–19255.  https://doi.org/10.1016/j.ijhydene.2014.04.139.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica JuriquillaUniversidad Nacional Autónoma de MéxicoQueretaroMexico

Personalised recommendations