Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 282–297 | Cite as

A Tropical Composting Operation Unit at São Paulo Zoo as a Source of Bacterial Proteolytic Enzymes

  • Patrícia L. Ramos
  • Márcia Y. Kondo
  • Saara M. B. Santos
  • Suzan P. de Vasconcellos
  • Rafael C. S. Rocha
  • João B. da Cruz
  • Patrícia F. M. Eugenio
  • Hamilton Cabral
  • Maria A. Juliano
  • Luiz Juliano
  • João C. Setubal
  • Aline M. da Silva
  • Luciana T. D. CappeliniEmail author
Article
  • 105 Downloads

Abstract

Composting operation systems are valuable sources of microorganisms and enzymes. This work reports the assessment of proteolytic enzymes from cultivable bacteria isolated from a composting facility of the São Paulo Zoo Park (SPZPF), São Paulo, Brazil. Three hundred bacterial isolates were obtained and identified based on 16S rRNA gene as belonging to 13 different genera. The most common genus among the isolates was Bacillus (67%); some of which show high proteolytic activity in their culture media. Biochemical assays of hydrolytic activities using FRET peptides as substrates allowed the characterization of a repertoire of serine proteases and metalloproteases with different molecular weights secreted by Bacillus strains isolated from composting. Furthermore, thermostable serine and metalloproteases were detected in the composting leachate, which might be of interest for industrial applications.

Keywords

Proteases FRET peptides Thermostable proteases Bacillus Composting Leachate 

Notes

Funding information

This study was supported by the Brazilian research agencies Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP—Projects 12/50191-4R, 2013/12106-8, 2014/07037-0, and 2011/06548-2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Projects 471340/2011-1 and 470388/2010-2). The authors would like to thank Paulo Magalhães Bressan (Fundação Parque Zoológico de São Paulo) for providing access to the composting facility.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

Supplementary material

12010_2018_2810_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 13 KB)
12010_2018_2810_MOESM2_ESM.docx (14 kb)
ESM 2 (DOCX 14 KB)
12010_2018_2810_MOESM3_ESM.docx (77 kb)
ESM 3 (DOCX 77 KB)
12010_2018_2810_MOESM4_ESM.docx (40 kb)
ESM 4 (DOCX 39 KB)
12010_2018_2810_MOESM5_ESM.docx (104 kb)
ESM 5 (DOCX 104 KB)
12010_2018_2810_MOESM6_ESM.docx (46 kb)
ESM 6 (DOCX 46 KB)
12010_2018_2810_MOESM7_ESM.docx (120 kb)
ESM 7 (DOCX 120 KB)

References

  1. 1.
    Martins, L. F., Antunes, L. P., Pascon, R. C., Oliveira, J. C., Digiampietri, L. A., Barbosa, D., Peixoto, B. M., Vallim, M. A., Viana-Niero, C., Ostroski, E. H., Telles, G. P., Dias, Z., Cruz, J. B., Juliano, L., Verjovski-Almeida, S., Silva, A. M., & Setubal, J. C. (2013). Metagenomic analysis of a tropical composting operation at the São Paulo Zoo Park reveals diversity of biomass degradation functions and organisms. PLoS One, 8(4), e61928.Google Scholar
  2. 2.
    Ben-David, E. A., Zaady, E., Sher, Y., & Nejidat, A. (2011). Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev Desert using combined PLFA and DGGE analyses. FEMS Microbiology Ecology., 76(3), 492–503.Google Scholar
  3. 3.
    Portillo, M. C., Villahermosa, D., Corzo, A., & Gonzalez, J. M. (2011). Microbial community fingerprinting by differential display-denaturing gradient gel electrophoresis. Applied and Environmental Microbiology., 77(1), 351–354.Google Scholar
  4. 4.
    Shi, S., Richardson, A. E., O'Callaghan, M., DeAngelis, K. M., Jones, E. E., Stewart, A., Firestone, M. K., & Condron, L. M. (2011). Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 77(3), 600–610.Google Scholar
  5. 5.
    Li, H., Xu, X., Chen, H., Zhang, Y., Xu, J., Wang, J., & Lu, X. (2013). Molecular analyses of the functional microbial community in composting by PCR-DGGE targeting the genes of the beta-glucosidase. Bioresource Technology, 134, 51–58.Google Scholar
  6. 6.
    Bitencourt, A. L. V., Vallim, M. A., Maia, D., Spinelli, R., Angeloni, R., Principal, L., Souza, E., & Pascon, R. C. (2010). Core sampling test in large-scale compost cells for microorganism isolation. African Journal of Microbiology Research, 4, 1631–1634.Google Scholar
  7. 7.
    Tchobanoglous, G., Theisen, H., & Vigil, S. (1993). Integrated solid waste management: engineering principles and management issues. McGraw-Hill, Inc. endopeptidases. Analytical Biochemistry, 421, 299–307.Google Scholar
  8. 8.
    Lazcano, C., Gomez-Brandon, M., & Dominguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7), 1013–1019.Google Scholar
  9. 9.
    Vargas-Garcia, M. C., Suarez-Estrella, F., Lopez, M. J., & Moreno, J. (2007). Effect of inoculation in composting processes: modifications in lignocellulosic fraction. Waste Management, 27(9), 1099–1107.Google Scholar
  10. 10.
    Aira, M., Monroy, F., & Dominguez, J. (2007). Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. The Science of the Total Environment., 385(1-3), 252–261.Google Scholar
  11. 11.
    Mondini, C., Fornasier, F., & Sinicco, T. (2004). Enzymatic activity as a parameter for the characterization of the composting process. Soil Biology and Biochemistry., 36(10), 1587–1594.Google Scholar
  12. 12.
    Antunes, L. P., Martins, L. F., Pereira, R. V., Thomas, A. M., Barbosa, D., Lemos, L. N., Silva, G. M. M., Moura, L., S, M., Epamino, G. W. C., Digiampietri, L. A., Lombardi, K. C., Ramos, P. L., Quaggio, R. B., Oliveira, J. C. F., Pascon, R. C., Cruz, J. B., Silva, A. M., & Setubal, J. C. (2016). Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Scientific Reports, 6(1), 38915.Google Scholar
  13. 13.
    Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., & Pace, N. R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America, 82(20), 6955–6959.Google Scholar
  14. 14.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.Google Scholar
  15. 15.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.Google Scholar
  16. 16.
    Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.Google Scholar
  17. 17.
    Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783–791.Google Scholar
  18. 18.
    Korkmaz, B., Attucci, S., Juliano, M. A., Kalupov, T., Jourdan, M. L., Juliano, L., & Gauthier, F. (2008). Measuring elastase, proteinase 3 and cathepsin G activities at the surface of human neutrophils with fluorescence resonance energy transfer substrates. Nature Protocols, 3(6), 991–1000.Google Scholar
  19. 19.
    Oliveira, L. C., Silva, V. O., Okamoto, D. N., Kondo, M. Y., Santos, S. M., Hirata, I. Y., Vallim, M. A., Pascon, R. C., Gouvea, I. E., Juliano, M. A., & Juliano, L. (2012). Internally quenched fluorescent peptide libraries with randomized sequences designed to detect endopeptidases. Analytical Biochemistry, 421(1), 299–307.Google Scholar
  20. 20.
    Vandooren, J., Geurts, N., Martens, E., Van den Steen, P. E., & Opdenakker, G. (2013). Zymography methods for visualizing hydrolytic enzymes. Nature Methods, 10(3), 211–220.Google Scholar
  21. 21.
    Chandna, P., Mallik, S., & Kuhad, R. C. (2013). Assessment of bacterial diversity in agricultural by-product compost by sequencing of cultivated isolates and amplified rDNA restriction analysis. Applied Microbiology and Biotechnology, 97(15), 6991–7003.Google Scholar
  22. 22.
    Partanen, P., Hultman, J., Paulin, L., Auvinen, P., & Romantschuk, M. (2010). Bacterial diversity at different stages of the composting process. BMC Microbiology, 10(1), 94.Google Scholar
  23. 23.
    Pepe, O., Ventorino, V., & Blaiotta, G. (2013). Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application. Waste Management, 33(7), 1616–1625.Google Scholar
  24. 24.
    Contesini, F. J., Melo, R. R., & Sato, H. H. (2018). An overview of Bacillus proteases: from production to application. Critical Reviews in Biotechnology, 38(3), 321–334.Google Scholar
  25. 25.
    Alcaraz, L. D., Moreno-Hagelsieb, G., Eguiarte, L. E., Souza, V., Herrera-Estrella, L., & Olmedo, G. (2010). Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics, 11(1), 332.Google Scholar
  26. 26.
    Bhatia, A., Madan, S., Sahoo, J., Ali, M., Pathania, R., & Kazmi, A. A. (2013). Diversity of bacterial isolates during full scale rotary drum composting. Waste Management, 33(7), 1595–1601.Google Scholar
  27. 27.
    Maurer, K. H. (2004). Detergent proteases. Current Opinion in Biotechnology, 15(4), 330–334.Google Scholar
  28. 28.
    Oda, K. (2012). New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases. Journal of Biochemistry, 151(1), 13–25.Google Scholar
  29. 29.
    Gessesse, A. (1997). The use of nug meal as a low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresource Technology, 62(1-2), 59–61.Google Scholar
  30. 30.
    Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., & Nasri, M. (2009). Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresource Technology, 100(13), 3366–3373.Google Scholar
  31. 31.
    Hadj-Ali, N. E., Agrebi, R., Ghorbel-Frikha, B., Sellami-Kamoun, A., Kanoun, S., & Nasri, M. (2007). Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated Bacillus licheniformis NH1. Enzyme and Microbial Technology, 40(4), 515–523.Google Scholar
  32. 32.
    Shrinivas, D., Kumar, R., & Naik, G. R. (2012). Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkalophilic Bacillus halodurans exhibiting dehairing activity. Journal of Industrial Microbiology and Biotechnology, 39(1), 93–98.Google Scholar
  33. 33.
    Wang, J., Xu, A., Wan, Y., & Li, Q. (2013). Purification and characterization of a new metallo-neutral protease for beer brewing from Bacillus amyloliquefaciens SYB-001. Applied Biochemistry and Biotechnology, 170(8), 2021–2033.Google Scholar
  34. 34.
    Schechter, I., & Berger, A. (1967). On the size of the active site in proteases. I. Papain. Biochemical and Biophysical Research Communications, 27(2), 157–162.Google Scholar
  35. 35.
    Deng, A., Wu, J., Zhang, Y., Zhang, G., & Wen, T. (2010). Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresource Technology, 101(18), 7111–7117.Google Scholar
  36. 36.
    Karan, R., Capes, M. D., & Dassarma, S. (2012). Function and biotechnology of extremophilic enzymes in low water activity. Aquatic Biosystems, 8, 1–15.Google Scholar
  37. 37.
    Okamoto, D. N., Kondo, M. Y., Santos, J. A., Nakajima, S., Hiraga, K., Oda, K., Juliano, M. A., Juliano, L., & Gouvea, I. E. (2009). Kinetic analysis of salting activation of a subtilisin-like halophilic protease. Biochimica et Biophysica Acta, 1794(2), 367–373.Google Scholar
  38. 38.
    Bhairi, S. M. (1997). In Calbiochem-Novobiochem Corporation SD (Ed.), A guide to the properties and uses of detergents in biology and biochemistry (Vol. 1, p. 41). San Diego: Calbiochem-Novobiochem Corporation.Google Scholar
  39. 39.
    James, W., & Mandelstam, J. (1985). Protease production during sporulation of germination mutants of Bacillus subtilis and the cloning of a functional gerE gene. Journal of General Microbiology, 131(9), 2421–2430.Google Scholar
  40. 40.
    Joshi, S., & Satyanarayana, T. (2013). Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresource Technology, 131, 76–85.Google Scholar
  41. 41.
    Sinha, R., & Khare, S. K. (2013). Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity. Bioresource Technology, 145, 357–361.Google Scholar
  42. 42.
    Singh, S., Gupta, P., & Bajaj, B. K. (2018). Characterization of a robust serine protease from Bacillus subtilis K-1. J Basic Microbiology, 58(1), 88–98.Google Scholar
  43. 43.
    Hadjdj, R., Badis, A., Mechri, S., Eddouaouda, K., Khelouia, L., Annane, R., et al. (2018). Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A. International Journal of Biological Macromolecules, 114, 1033–1048.Google Scholar
  44. 44.
    Dorra, G., Ines, K., Imen, B. S., Laurent, C., Sana, A., Tabbene, O., et al. (2018). Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Bacillus halotolerans strain CT2. International Journal of Biological Macromolecules, 111, 342–351.Google Scholar
  45. 45.
    Aguilar, J. G. S., & Sato, H. H. (2018). Microbial proteases: production and application in obtaining protein hydrolysates. Food Research International, 103, 253–262.Google Scholar
  46. 46.
    Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspect of microbial proteases. Microbiol. Mol. Biol., 62, 597–635.Google Scholar
  47. 47.
    Byun, S., Pan, J., Kim, K., Park, K., & Shin, Y. (1995). Overproduction of Serratia marcescens metalloprotease (SMP) from recombinant Serratia marcescens strains. Biotechnology Letters, 17(5), 497–502.Google Scholar
  48. 48.
    Iqbal, A., Hakim, A., Hossain, M. S., Rahman, M. R., Islam, K., Azim, M. F., et al. (2017). Partial purification and characterization of serine protease produced through fermentation of organic municipal solid wastes by Serratia marcescens A3 and Pseudomonas putida A2. Journal of Genetic Engineering and Biotechnology, 16, 29–37.Google Scholar
  49. 49.
    Fuke, P., Gujar, V. V., & Khardenavis, A. A. (2018). Genome annotation and validation of keratin-hydrolyzing proteolytic enzymes from Serratia marcescens EGD-HP20. Applied Biochemistry and Biotechnology, 184(3), 970–986.Google Scholar
  50. 50.
    Wu, D., Li, P., Zhou, J., Gao, M., Lou, X., Ran, T., Wu, S., Wang, W., & Xu, D. (2016). Identification of a toxic serralysin family protease with unique thermostable property from S. marcescens FS14. International Journal of Biological Macromolecules, 93(Pt A), 98–106.Google Scholar
  51. 51.
    Romero, F. J., Garcı́a, L. A., Salas, J. A., Dı́az, M., & Quirós, L. M. (2001). Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown in whey. Process Biochemistry, 36(6), 507–515.Google Scholar
  52. 52.
    Bersaneti, P. A., Park, H. Y., Bae, K. S., Son, K. H., Shin, D., Hirata, I. Y., Juliano, M. A., Carmona, A. K., & Juliano, L. (2005). Characterization of arazyme, an exocellular metalloprotease isolated from Serratia proteamaculans culture medium. Enzyme and Microbial Technology, 37(6), 574–581.Google Scholar
  53. 53.
    Machado, S. G., Heyndrickx, M., De Block, J., Devreese, B., Vandenberghe, I., Vanetti, M. C. D., & Van Coillie, E. (2016). Identification and characterization of a heat-resistant protease from Serratia liquefaciens isolated from Brazilian cold raw milk. International Journal of Food Microbiology, 222, 65–71.Google Scholar
  54. 54.
    Kulikowska, D., & Klimiuk, E. (2008). The effect of landfill age on municipal leachate composition. Bioresource Technology, 99(13), 5981–5985.Google Scholar
  55. 55.
    Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal of Hazardous Material, 150(3), 468–493.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Patrícia L. Ramos
    • 1
    • 2
  • Márcia Y. Kondo
    • 1
  • Saara M. B. Santos
    • 1
  • Suzan P. de Vasconcellos
    • 3
  • Rafael C. S. Rocha
    • 1
    • 4
  • João B. da Cruz
    • 2
  • Patrícia F. M. Eugenio
    • 5
  • Hamilton Cabral
    • 6
  • Maria A. Juliano
    • 1
  • Luiz Juliano
    • 1
  • João C. Setubal
    • 7
  • Aline M. da Silva
    • 7
  • Luciana T. D. Cappelini
    • 1
    Email author return OK on get
  1. 1.Department of Biophysics, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Applied Research DepartmentSão Paulo Zoo Park FoundationSão PauloBrazil
  3. 3.Department of Biological ScienceUniversidade Federal de São PauloDiademaBrazil
  4. 4.Stoller do BrasilCosmópolisBrazil
  5. 5.Institute of Chemistry of São Carlos, Universidade de São PauloSão CarlosBrazil
  6. 6.Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirao PretoUniversidade de São PauloRibeirão PretoBrazil
  7. 7.Department of BiochemistryInstitute of Chemistry, Universidade de São PauloSão PauloBrazil

Personalised recommendations