Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 152–162 | Cite as

Novel Competitive Chemiluminescence DNA Assay Based on Fe3O4@SiO2@Au-Functionalized Magnetic Nanoparticles for Sensitive Detection of p53 Tumor Suppressor Gene

  • Linyu WangEmail author
  • Manwen Yao
  • Xiangyi Fang
  • Xi Yao


A simple, rapid response time and ultrahigh sensitive chemiluminescence (CL) DNA assay based on Fe3O4@SiO2@Au-functionalized magnetic nanoparticles (Au-MNPs) was developed for detection of p53 tumor suppressor gene. In this study, 2′,6′-dimethylcarbonylphenyl-10-sulfopropyl acridinium-9-carboxylate 4′-NHS ester (NSP-DMAE-NHS), as a new kind of highly efficient luminescence reagent, was immobilized on the complementary sequence of the wild-type p53 (ssDNA) to improve the detection sensitivity. The optimal concentration of ssDNA-(NSP-DMAE-NHS) conjugates mixed with the wild-type p53 (wtp53) samples respectively. Then, the wtp53-Au-MNPs conjugates were added to continue the competitive reaction in the above solution. Subsequently, the Au-MNPs separated under magnetic field, measured by a homemade luminescent measurement system. Under optimal conditions, the method exhibited ultrasensitive sensitivity with a detection limit of 0.001 ng mL−1 (0.16 pM), a wide range of liner response from 0.001 ng mL−1~6.6 μg mL−1. Therefore, the immunomagnetic nanocomposites-based detection strategy was rapid, low-cost, and highly sensitive that can be easily extended to the early diagnosis of cancer development and monitoring of patient therapy.


Chemiluminescence DNA assay Fe3O4@SiO2@Au magnetic nanoparticles (Au-MNPs) Wild-type p53·NSP-DMAE-NHS 


Funding Information

This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 81371642) and the 111 Project (B14040).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12010_2018_2808_MOESM1_ESM.docx (5.4 mb)
ESM 1 (DOCX 5558 kb)


  1. 1.
    Junttila, M. R., & Evan, G. I. (2009). p53— a Jack of all trades but master of none. Nature Reviews Cancer, 9(11), 821–829.CrossRefGoogle Scholar
  2. 2.
    Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835), 342–348.CrossRefGoogle Scholar
  3. 3.
    Duffy, M. J., Synnott, N. C., McGowan, P. M., Crown, J., O’Connor, D., & Gallagher, W. M. (2014). p53 as a target for the treatment of cancer. Cancer Treatment Reviews, 40(10), 1153–1160.CrossRefGoogle Scholar
  4. 4.
    Gaspar, V. M., Correia, I. J., Sousa, A., Silva, F., Paquete, C. M., Queiroz, J. A., & Sousa, F. (2011). Nanoparticle mediated delivery of pure P53 supercoiled plasmid DNA for gene therapy. Journal of Controlled Release, 156(2), 212–222.CrossRefGoogle Scholar
  5. 5.
    Paleček, E., Ostatná, V., Černocká, H., Joerger, A. C., & Fersht, A. R. (2011). Electrocatalytic monitoring of metal binding and mutation-induced conformational changes in p53 at picomole level. Journal of the American Chemical Society, 133(18), 7190–7196.CrossRefGoogle Scholar
  6. 6.
    Will, K., Warnecke, G., Bergmann, S., & Deppert, W. (1995). Species- and tissue-specific expression of the C-terminal alternatively spliced form of the tumor suppressor p53. Nucleic Acids Research, 23(20), 4023–4028.CrossRefGoogle Scholar
  7. 7.
    Miyajima, K., Tamiya, S., Oda, Y., Adachi, T., Konomoto, T., Toyoshiba, H., Masuda, K., & Tsuneyoshi, M. (2001). Relative quantitation of p53 and MDM2 gene expression in leiomyosarcoma; real-time semi-quantitative reverse transcription-polymerase chain reaction. Cancer Letters, 164(2), 177–188.CrossRefGoogle Scholar
  8. 8.
    Narayanaswami, G., & Taylor, P. D. (2002). Site-directed mutagenesis of exon 5 of p53: purification, analysis, and validation of amplicons for DHPLC. Genetic Testing, 6(3), 177–184.CrossRefGoogle Scholar
  9. 9.
    Behn, M., & Schuermann, M. (1998). Sensitive detection of p53 gene mutations by a ‘mutant enriched’ PCR-SSCP technique. Nucleic Acids Research, 26(5), 1356–1358.CrossRefGoogle Scholar
  10. 10.
    Van Orsouw, N. J., Dhanda, R. K., Rines, R. D., Smith, W. M., Sigalas, I., Eng, C., et al. (1998). Rapid design of denaturing gradient-based two-dimensional electrophoretic gene mutational scanning tests. Nucleic Acids Research, 26(10), 2398–2406.CrossRefGoogle Scholar
  11. 11.
    Wang, J., Rivas, G., Cai, X., Chicharro, M., Parrado, C., Dontha, N., Begleiter, A., Mowat, M., Palecek, E., & Nielsen, P. E. (1997). Detection of point mutation in the p53 gene using peptide nucleic acid biosensor. Analytica Chimica Acta, 344(1–2), 111–118.CrossRefGoogle Scholar
  12. 12.
    Noguchi, S., Koyama, H., Kasugai, T., Tsuji, N., Tsuda, H., Akiyama, F., Motomura, K., & Inaji, H. (1998). The possible prognostic significance of p53 immunostaining status of the primary tumor in patients developing local recurrence after breast-conserving surgery. Oncology, 55(5), 450–455.CrossRefGoogle Scholar
  13. 13.
    Barnes, D. M., Dublin, E. A., Fisher, C. J., Levison, D. A., & Millis, R. R. (1993). Immunohistochemical detection of p53 protein in mammary carcinoma: an important new independent indicator of prognosis? Human Pathology, 24(5), 469–476.CrossRefGoogle Scholar
  14. 14.
    Henke, R. P., Kruger, E., Ayhan, N., Hubner, D., Hammerer, P., & Huland, H. (1994). Immunohistochemical detection of p53 protein in human prostatic cancer. Journal of Urology, 152(4), 1297–1301.CrossRefGoogle Scholar
  15. 15.
    Marquette, C. A., Degiuli, A., Imbert-Laurenceau, E., Mallet, F., Chaix, C., Mandrand, B., et al. (2005). Latex bead immobilisation in PDMS matrix for the detection of p53 gene point mutation and anti-HIV-1 capsid protein antibodies. Analytical and Bioanalytical Chemistry, 381(5), 1019–1024.CrossRefGoogle Scholar
  16. 16.
    Xia, N., Liu, L., Yi, X., & Wang, J. (2009). Studies of interaction of tumor suppressor p53 with apo-MT using surface plasmon resonance. Analytical and Bioanalytical Chemistry, 395(8), 2569–2575.CrossRefGoogle Scholar
  17. 17.
    Jiang, T., Minunni, M., Wilson, P., Zhang, J., Turner, A. P., & Mascini, M. (2005). Detection of TP53 mutation using a portable surface plasmon resonance DNA-based biosensor. Biosensors and Bioelectronics, 20(10), 1939–1945.CrossRefGoogle Scholar
  18. 18.
    Han, S. H., Kim, S. K., Park, K., Yi, S. Y., Park, H. J., Lyu, H. K., Kim, M., & Chung, B. H. (2010). Detection of mutant p53 using field-effect transistor biosensor. Analytica Chimica Acta, 665(1), 79–83.CrossRefGoogle Scholar
  19. 19.
    Chen, C. P., Ganguly, A., Lu, C. Y., Chen, T. Y., Kuo, C. C., Chen, R. S., Tu, W. H., Fischer, W. B., Chen, K. H., & Chen, L. C. (2011). Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. Analytical Chemistry, 83(6), 1938–1943.CrossRefGoogle Scholar
  20. 20.
    Domenici, F., Bizzarri, A. R., & Cannistraro, S. (2012). Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Analytical Biochemistry, 421(1), 9–15.CrossRefGoogle Scholar
  21. 21.
    Marquette, C. A., Lawrence, M. F., & Blum, L. J. (2006). DNA covalent immobilization onto screen-printed electrode networks for direct label-free hybridization detection of p53 sequences. Analytical Chemistry, 78(3), 959–964.CrossRefGoogle Scholar
  22. 22.
    Wang, J., Zhu, X., Tu, Q., Guo, Q., Zarui, C. S., Momand, J., Sun, X. Z., & Zhou, F. (2008). Capture of p53 by electrodes modified with consensus DNA duplexes and amplified voltammetric detection using ferrocene-capped gold nanoparticle/streptavidin conjugates. Analytical Chemistry, 80(3), 769–774.CrossRefGoogle Scholar
  23. 23.
    Rippin, T. M., Freund, S. M. V., Veprintsev, D. B., & Fersht, A. R. (2002). Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. Journal of Molecular Biology, 319(2), 351–358.CrossRefGoogle Scholar
  24. 24.
    Portefaix, J. M., Fanutti, C., Granier, C., Crapez, E., Perham, R., Grenier, J., Pau, B., & del Rio, M. (2002). Detection of anti-p53 antibodies by ELISA using p53 synthetic or phage-displayed peptides. Journal of Immunological Methods, 259(1–2), 65–75.CrossRefGoogle Scholar
  25. 25.
    Xue, P., Zhang, K., Zhang, Z., Li, Y., Liu, F., Sun, Y., Zhang, X., Song, C., Fu, A., Jin, B., & Yang, K. (2012). Highly sensitive chemiluminescent analysis of residual bovine serum albumin (BSA) based on a pair of specific monoclonal antibodies and peroxyoxalate-glyoxaline-PHPPA dimer chemiluminescent system in vaccines. Applied Biochemistry and Biotechnology, 166(6), 1604–1614.CrossRefGoogle Scholar
  26. 26.
    Kugimiya, A., & Fukada, R. (2015). Chemiluminescence detection of serine, proline, glycine, asparagine, leucine, and histidine by using corresponding aminoacyl-tRNA synthetases as recognition elements. Applied Biochemistry and Biotechnology, 176(4), 1195–1202.CrossRefGoogle Scholar
  27. 27.
    Chuanlai, X., Cifang, P., Kai, H., Zhengyu, J., & Wukang, W. (2006). Chemiluminescence enzyme immunoassay (CLEIA) for the determination of chloramphenicol residues in aquatic tissues. Luminescence, 21(2), 126–128.CrossRefGoogle Scholar
  28. 28.
    Lin, S., Han, S. Q., Liu, Y. B., Xu, W. G., & Guan, G. Y. (2005). Chemiluminescence immunoassay for chloramphenicol. Analytical and Bioanalytical Chemistry, 382(5), 1250–1255.CrossRefGoogle Scholar
  29. 29.
    Xin, T. B., Wang, X., Jin, H., Liang, S. X., Lin, J. M., & Li, Z. J. (2009). Development of magnetic particle-based chemiluminescence enzyme immunoassay for the detection of 17beta-estradiol in environmental water. Applied Biochemistry and Biotechnology, 158(3), 582–594.CrossRefGoogle Scholar
  30. 30.
    Yang, X. Y., Guo, Y. S., Bi, S., & Zhang, S. S. (2009). Ultrasensitive enhanced chemiluminescence enzyme immunoassay for the determination of alpha-fetoprotein amplified by double-codified gold nanoparticles labels. Biosensors and Bioelectronics, 24(8), 2707–2711.CrossRefGoogle Scholar
  31. 31.
    Natrajan, A., & Wen, D. (2011). Facile N-alkylation of acridine esters with 1,3-propane sultone in ionic liquids. Green Chemistry, 13(4), 913.CrossRefGoogle Scholar
  32. 32.
    Pingarrón, J. M., Yáñez-Sedeño, P., & González-Cortés, A. (2008). Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta, 53(19), 5848–5866.CrossRefGoogle Scholar
  33. 33.
    Xu, X., Deng, C., Gao, M., Yu, W., Yang, P., & Zhang, X. (2006). Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Advanced Materials, 18(24), 3289–3293.CrossRefGoogle Scholar
  34. 34.
    Deng, Y., Qi, D., Deng, C., Zhang, X., & Zhao, D. (2008). Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society, 130(1), 28–29.CrossRefGoogle Scholar
  35. 35.
    Schlaeppi, J.-M. A., Kessler, A., & Foery, W. (1994). Development of a magnetic particle-based automated chemiluminescent immunoassay for triasulfuron. Journal of Agricultural and Food Chemistry, 42(9), 1914–1919.CrossRefGoogle Scholar
  36. 36.
    Malar, C. G., Seenuvasan, M., & Kumar, K. S. (2018). Prominent study on surface properties and diffusion coefficient of urease-conjugated magnetite nanoparticles. Applied Biochemistry and Biotechnology.Google Scholar
  37. 37.
    Pudlarz, A. M., Czechowska, E., Ranoszek-Soliwoda, K., Tomaszewska, E., Celichowski, G., Grobelny, J., & Szemraj, J. (2018). Immobilization of recombinant human catalase on gold and silver nanoparticles. Applied Biochemistry and Biotechnology.Google Scholar
  38. 38.
    Wang, X., Wang, X., Wang, X., Chen, F., Zhu, K., Xu, Q., & Tang, M. (2013). Novel electrochemical biosensor based on functional composite nanofibers for sensitive detection of p53 tumor suppressor gene. Analytica Chimica Acta, 765, 63–69.CrossRefGoogle Scholar
  39. 39.
    Raoof, J. B., Ojani, R., Golabi, S. M., Hamidi-Asl, E., & Hejazi, M. S. (2011). Preparation of an electrochemical PNA biosensor for detection of target DNA sequence and single nucleotide mutation on p53 tumor suppressor gene corresponding oligonucleotide. Sensors and Actuators B: Chemical, 157(1), 195–201.CrossRefGoogle Scholar
  40. 40.
    Chen, X., He, C., Zhang, Z., & Wang, J. (2013). Sensitive chemiluminescence detection of wild-type p53 protein captured by surface-confined consensus DNA duplexes. Biosensors and Bioelectronics, 47, 335–339.CrossRefGoogle Scholar
  41. 41.
    Luo, X.-W., Du, F.-J., Wu, Y., Gao, L.-J., & Li, X.-X. (2013). Electrochemical DNA sensor for determination of p53 tumor suppressor gene incorporating gold nanoparticles modification. Chinese Journal of Analytical Chemistry, 41(11), 1664–1668.CrossRefGoogle Scholar
  42. 42.
    Afsharan, H., Navaeipour, F., Khalilzadeh, B., Tajalli, H., Mollabashi, M., Ahar, M. J., & Rashidi, M. R. (2016). Highly sensitive electrochemiluminescence detection of p53 protein using functionalized Ru-silica nanoporous@gold nanocomposite. Biosensors and Bioelectronics, 80, 146–153.CrossRefGoogle Scholar
  43. 43.
    Tiwari, A., Deshpande, S. R., Kobayashi, H., & Turner, A. P. F. (2012). Detection of p53 gene point mutation using sequence-specific molecularly imprinted PoPD electrode. Biosensors and Bioelectronics, 35(1), 224–229.CrossRefGoogle Scholar
  44. 44.
    Qi, Y., Xiu, F. R., Zheng, M., & Li, B. (2016). A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: sensitivity, selectivity and mechanism. Biosensors and Bioelectronics, 83, 243–249.CrossRefGoogle Scholar
  45. 45.
    Esteban-Fernandez de Avila, B., Araque, E., Campuzano, S., Pedrero, M., Dalkiran, B., Barderas, R., et al. (2015). Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples. Analytical Chemistry, 87(4), 2290–2298.CrossRefGoogle Scholar
  46. 46.
    Altintas, Z., & Tothill, I. E. (2012). DNA-based biosensor platforms for the detection of TP53 mutation. Sensors and Actuators, B: Chemical, 169, 188–194.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric ResearhXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Tongji UniversityShanghaiPeople’s Republic of China
  3. 3.School of ScienceXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations