Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 101–115 | Cite as

Using Natural Waste Material as a Matrix for the Immobilization of Enzymes: Chicken Eggshell Membrane Powder for β-Galactosidase Immobilization

  • E. KessiEmail author
  • J. L. Arias
Article
  • 217 Downloads

Abstract

Avian eggshell membranes are good candidates as a matrix for immobilization procedures. Chicken eggshell, a waste material available from the poultry industry as a byproduct, is a very safe and cheap raw material. While pieces of eggshell membrane, or even particles from whole eggshell, have been previously used for these purposes, we report here the use of eggshell membrane powder for E. coli β-galactosidase immobilization with glutaraldehyde as cross-linker. A kinetic characterization is provided for eggshell membrane powder-bound enzyme compared to free enzyme. Results show a remarkable similarity between bound and free enzyme and also that the immobilized enzyme is stable and can be reused several times. Moreover, bound enzyme is able to produce glucose from skim milk serum.

Keywords

Eggshell membrane powder Enzyme immobilization β-Galactosidase 

Notes

Acknowledgements

This work was supported by FONDECYT 1150681 granted by the Chilean Council for Science and Technology (CONICYT). Special thanks are given to Victor Castro-Fernández (Facultad de Ciencias, Universidad de Chile) for his invaluable help in obtaining and managing structural data and to David Carrino for critical reading of the manuscript.

References

  1. 1.
    Windhorst, H.-W., Grabkowsky, B., & Wilke, A. (2013). Atlas of the Global Egg Industry, 1–36. Retrieved from http://www.internationalegg.com/wp-content/uploads/2015/08/atlas_2013_web.pdf
  2. 2.
    Walton, H. V, Cotterill, O. J., & Vandepopuliere, J. M. (1973). Composition of shell waste from egg breaking plants. Poultry Science, 52(5), 1836–1841. Retrieved from  https://doi.org/10.3382/ps.0521836
  3. 3.
    Makkar, H. P. S., & Sharma, O. P. (1983). Egg shell as a carrier for enzyme immobilization. Biotechnology and Bioengineering, 25(2), 595–597.  https://doi.org/10.1002/bit.260250222.Google Scholar
  4. 4.
    Guru, P. S., & Dash, S. (2014). Sorption on eggshell waste—a review on ultrastructure, biomineralization and other applications. Advances in Colloid and Interface Science, 209, 49–67.  https://doi.org/10.1016/j.cis.2013.12.013.Google Scholar
  5. 5.
    Arias JL, Arias JI, Fernandez, M. (2007). Arias JL, Arias JI, Fernandez MS. 2007; Avian eggshell as a template for biomimetic synthesis of new materials. In Handbook of biomineralization, vol 2, E Baeuerlein, P Behrens, M Epple (eds). Wiley-VCH: Weinheim, Germany; 109–117. In Handbook of biomineralization: biological aspects and structure formation (pp. 100–117).Google Scholar
  6. 6.
    King’ori, A. (2011). Review of the factors that influence egg fertility and hatchability in poultry. International Journal of Poultry Science., 10(6), 483–492.  https://doi.org/10.3923/ijps.2011.483.492.Google Scholar
  7. 7.
    Mittal, A., Teotia, M., Soni, R. K., & Mittal, J. (2016). Applications of egg shell and egg shell membrane as adsorbents: a review. Journal of Molecular Liquids, 223, 376–387.  https://doi.org/10.1016/j.molliq.2016.08.065.Google Scholar
  8. 8.
    Park, S., Choi, K. S., Lee, D., Kim, D., Lim, K. T., Lee, K. H., Seonwoo, H., & Kim, J. (2016). Eggshell membrane: review and impact on engineering. Biosystems Engineering, 151, 446–463.  https://doi.org/10.1016/j.biosystemseng.2016.10.014.Google Scholar
  9. 9.
    Baláz, M. (2014). Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomaterialia, 10(9), 3827–3843.  https://doi.org/10.1016/j.actbio.2014.03.020.Google Scholar
  10. 10.
    Cordeiro, C. M., &. Hincke, M. T. (2011). Recent patents on eggshell: Shell and membrane applications. Recent Patents on Food, Nutrition & Agriculture, 3 (1), 1–8.  https://doi.org/10.2174/2212798411103010001.
  11. 11.
    Arias, J. L., Fink, D., Xiao, S.-Q., Heuer, A. H., & Caplan, A. I. (1993). Biomineralization and eggshells: Cell-mediated acellular compartments of mineralized extracellular matrix. International Review of Cytology, 145, 217–250.  https://doi.org/10.1016/S0074-7696(08)60428-3.Google Scholar
  12. 12.
    Dennis, J. E., Xiao, S. Q., Agarwal, M., Fink, D. J., Heuer, A. H., & Caplan, A. I. (1996). Microstructure of matrix and mineral components of eggshells from white leghorn chickens (Gallus gallus). Journal of Morphology, 228(3), 287–306. https://doi.org/10.1002/(SICI)1097-4687(199606)228:3<287::AID-JMOR2>3.0.CO;2-#.Google Scholar
  13. 13.
    Arias, J. L., Cataldo, M., Fernandez, M. S., & Kessi, E. (1997). Effect of beta-aminoproprionitrile on eggshell formation. British Poultry Science, 38(4), 349–354.  https://doi.org/10.1080/00071669708418001.Google Scholar
  14. 14.
    Fernandez, M. S., Araya, M., & Arias, J. L. (1997). Eggshells are shaped by a precise spatio-temporal arrangement of sequentially deposited macromolecules. Matrix Biology, 16(1), 13–20.  https://doi.org/10.1016/S0945-053X(97)90112-8.Google Scholar
  15. 15.
    Soledad Fernandez, M., Moya, A., Lopez, L., & Arias, J. L. (2001). Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formation. Matrix Biology, 19(8), 793–803.  https://doi.org/10.1016/S0945-053X(00)00128-1.Google Scholar
  16. 16.
    Arias, J. L., Fernandez, M. S., Dennis, J. E., & Caplan, A. I. (1991). Collagens of the chicken eggshell membranes. Connective Tissue Research, 26(1–2), 37–45.  https://doi.org/10.3109/03008209109152162.Google Scholar
  17. 17.
    Arias, J. L., Carrino, D. A., Fernandez, M. S., Rodriguez, J. P., Dennis, J. E., & Caplan, A. I. (1992). Partial biochemical and immunohistochemical characterization of avian eggshell extracellular matrices. Archives of Biochemistry and Biophysics, 298, 293–302.Google Scholar
  18. 18.
    Nys, Y., Hincke, M. T., Arias, J. L., Garcia-Ruiz, J. M., & Solomon, S. E. (1999). Avian eggshell mineralization. Poultry and Avian Biology Reviews, 10(3), 143–166.Google Scholar
  19. 19.
    Du, J., Hincke, M. T., Rose-Martel, M., Hennequet-Antier, C., Brionne, A., Cogburn, L. A., et al. (2015). Identifying specific proteins involved in eggshell membrane formation using gene expression analysis and bioinformatics. BMC Genomics, 16(1), 1–13.  https://doi.org/10.1186/s12864-015-2013-3.Google Scholar
  20. 20.
    Cordeiro, C. M. M., & Hincke, M. T. (2015). Quantitative proteomics analysis of eggshell membrane proteins during chick embryonic development. Journal of Proteomics, 130, 11–25.  https://doi.org/10.1016/j.jprot.2015.08.014.Google Scholar
  21. 21.
    Rao, A., Arias, J., & Cölfen, H. (2017). On mineral retrosynthesis of a complex biogenic scaffold. Inorganics, 5(1), 16.  https://doi.org/10.3390/inorganics5010016.Google Scholar
  22. 22.
    Arias, J. L., Arias, J. I., & Fernandez, M. S. (2008). Avian eggshell as a template for biomimetic synthesis of new materials. Handbook of Biomineralization: Biological Aspects and Structure Formation, 2, 109–117.  https://doi.org/10.1002/9783527619443.ch30.Google Scholar
  23. 23.
    Joshi, P., Joshi, H. C., Sanghi, S. K., & Kundu, S. (2010). Immobilization of monoamine oxidase on eggshell membrane and its application in designing an amperometric biosensor for dopamine. Microchimica Acta, 169(3), 383–388.  https://doi.org/10.1007/s00604-010-0346-9.Google Scholar
  24. 24.
    Yang, H. T., Tan, Q., & Zhao, H. (2014). Progress in various crosslinking modification for acellular matrix. Chinese Medical Journal, 127(17), 3156–3164.  https://doi.org/10.3760/cma.j.issn.0366-6999.20140900.Google Scholar
  25. 25.
    Zheng, B., Xie, S., Qian, L., Yuan, H., Xiao, D., & Choi, M. M. F. (2011). Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor. Sensors and Actuators, B: Chemical, 152(1), 49–55.  https://doi.org/10.1016/j.snb.2010.09.051.Google Scholar
  26. 26.
    Chattopadhyay, S., & Sen, R. (2012). A comparative performance evaluation of jute and eggshell matrices to immobilize pancreatic lipase. Process Biochemistry, 47(5), 749–757.  https://doi.org/10.1016/j.procbio.2012.02.003.Google Scholar
  27. 27.
    Fernández, M. S., Valenzuela, F., Arias, J. I., Neira-Carrillo, A., & Arias, J. L. (2016). Is the snail shell repair process really influenced by eggshell membrane as a template of foreign scaffold? Journal of Structural Biology, 196(2), 187–196.  https://doi.org/10.1016/j.jsb.2016.10.001.Google Scholar
  28. 28.
    Fernandes, P. (2010). Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Research, 2010, 1–19.  https://doi.org/10.4061/2010/862537.Google Scholar
  29. 29.
    Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3(1), 1–9.  https://doi.org/10.1007/s13205-012-0071-7.Google Scholar
  30. 30.
    Juers, D. H., Jacobson, R. H., Wigley, D., Zhang, X. J., Huber, R. E., Tronrud, D. E., & Matthews, B. W. (2000). High resolution refinement of beta-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for alpha-complementation. Protein science : a Publication of the Protein Society, 9(9), 1685–1699.  https://doi.org/10.1110/ps.9.9.1685.Google Scholar
  31. 31.
    Juers, D. H., Matthews, B. W., & Huber, R. E. (2012). LacZ β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Science, 21(12), 1792–1807.  https://doi.org/10.1002/pro.2165.Google Scholar
  32. 32.
    Park, T. G., & Hoffman, A. S. (1990). Immobilization and characterization of beta-galactosidase in thermally reversible hydrogel beads. Journal of Biomedical Materials Research, 24(1), 21–38.  https://doi.org/10.1002/jbm.820240104.Google Scholar
  33. 33.
    Sen, S., Ray, L., & Chattopadhyay, P. (2012). Production, purification, immobilization, and characterization of a thermostable beta-galactosidase from Aspergillus alliaceus. Applied Biochemistry and Biotechnology, 167(7), 1938–1953.  https://doi.org/10.1007/s12010-012-9732-6.Google Scholar
  34. 34.
    Sulaiman, S., Mokhtar, M. N., Naim, M. N., Baharuddin, A. S., & Sulaiman, A. (2014). A review: Potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Applied Biochemistry and Biotechnology, 175(4), 1817–1842.  https://doi.org/10.1007/s12010-014-1417-x.Google Scholar
  35. 35.
    Calandri, C., Marques, D. P., Cesar Mateo, A., Carrascosa, V., Guisán, J. M., Lorente, G. F., & Pessela, B. C. (2013). Purification, immobilization, stabilization and characterization of commercial extract with β-galactosidase activity. Journal of Biocatalysis & Biotransformation, 02(01), 1–7.  https://doi.org/10.4172/2324-9099.1000104.Google Scholar
  36. 36.
    Klein, M. P., Fallavena, L. P., Schöffer, J. D. N., Ayub, M. A. Z., Rodrigues, R. C., Ninow, J. L., & Hertz, P. F. (2013). High stability of immobilized β-d-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydrate Polymers, 95(1), 465–470.  https://doi.org/10.1016/j.carbpol.2013.02.044.Google Scholar
  37. 37.
    Panesar, P. S., Kumari, S., & Panesar, R. (2010). Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Research, 2010, 1–16.  https://doi.org/10.4061/2010/473137.Google Scholar
  38. 38.
    Kishore, D., Talat, M., Srivastava, O. N., & Kayastha, A. M. (2012). Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications. PLoS One, 7(7), e40708.  https://doi.org/10.1371/journal.pone.0040708.Google Scholar
  39. 39.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72(1–2), 248–254.  https://doi.org/10.1016/0003-2697(76)90527-3.Google Scholar
  40. 40.
    Vriend, G. (1990). WHAT IF: A molecular modeling and drug design program. Journal of Molecular Graphics, 8(1), 52–56.  https://doi.org/10.1016/0263-7855(90)80070-V.Google Scholar
  41. 41.
    Vemuri, G., Banerjee, R., & Bhattacharyya, B. C. (1998). Immobilization of lipase using egg shell and alginate as carriers: optimization of reaction conditions. Bioprocess Engineering, 19(2), 111–114.  https://doi.org/10.1007/s004490050490.Google Scholar
  42. 42.
    Choi, M. M. F., & Yiu, T. P. (2004). Immobilization of beef liver catalase on eggshell membrane for fabrication of hydrogen peroxide biosensor. Enzyme and Microbial Technology, 34(1), 41–47.  https://doi.org/10.1016/j.enzmictec.2003.08.005.Google Scholar
  43. 43.
    Kuby, S. A., & Lardy, H. A. (1953). Purification and kinetics of β-D-galactosidase from Escherichia coli, strain K-12. Journal of the American Chemical Society, 75(4), 890–896.  https://doi.org/10.1021/ja01100a035.Google Scholar
  44. 44.
    Matthews, B. W. (2005). The structure of E. coli β-galactosidase. Comptes Rendus - Biologies, 328(6 SPEC. ISS), 549–556.  https://doi.org/10.1016/j.crvi.2005.03.006.Google Scholar
  45. 45.
    D’Souza, S. F., Kumar, J., Jha, S. K., & Kubal, B. S. (2013). Immobilization of the urease on eggshell membrane and its application in biosensor. Materials Science and Engineering C, 33(2), 850–854.  https://doi.org/10.1016/j.msec.2012.11.010.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileSantiagoChile

Personalised recommendations