Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 298–309 | Cite as

Penicillium purpurogenum Produces a Set of Endoxylanases: Identification, Heterologous Expression, and Characterization of a Fourth Xylanase, XynD, a Novel Enzyme Belonging to Glycoside Hydrolase Family 10

  • Valentina Echeverría
  • Jaime EyzaguirreEmail author


The fungus Penicillium purpurogenum grows on a variety of natural carbon sources and secretes a large number of enzymes which degrade the polysaccharides present in lignocellulose. In this work, the gene coding for a novel endoxylanase has been identified in the genome of the fungus. This gene (xynd) possesses four introns. The cDNA has been expressed in Pichia pastoris and characterized. The enzyme, XynD, belongs to family 10 of the glycoside hydrolases. Mature XynD has a calculated molecular weight of 40,997. It consists of 387 amino acid residues with an N-terminal catalytic module, a linker rich in ser and thr residues, and a C-terminal family 1 carbohydrate-binding module. XynD shows the highest identity (97%) to a putative endoxylanase from Penicillium subrubescens but its highest identity to a biochemically characterized xylanase (XYND from Penicillium funiculosum) is only 68%. The enzyme has a temperature optimum of 60 °C, and it is highly stable in its pH optimum range of 6.5–8.5. XynD is the fourth biochemically characterized endoxylanase from P. purpurogenum, confirming the rich potential of this fungus for lignocellulose biodegradation. XynD, due to its wide pH optimum and stability, may be a useful enzyme in biotechnological procedures related to this biodegradation process.


Penicillium purpurogenum Pichia pastoris Heterologous expression Endoxylanases Lignocellulose biodegradation 


Funding Information

This work has been supported by grants from FONDECYT (1130180) and Universidad Andrés Bello (DI-478-14/R and DI-31-12/R).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12010_2018_2782_MOESM1_ESM.docx (237 kb)
Fig. S1 (DOCX 236 kb)
12010_2018_2782_MOESM2_ESM.docx (20 kb)
Fig. S2 (DOCX 19 kb)
12010_2018_2782_MOESM3_ESM.docx (485 kb)
Fig. S3 (DOCX 485 kb)


  1. 1.
    Kabel, M. A., van den Borne, H., Vincken, J.-P., Voragen, A. G. J., & Schols, H. A. (2007). Structural differences of xylans affect their interaction with cellulose. Carbohydrate Polymers, 69(1), 94–105.CrossRefGoogle Scholar
  2. 2.
    Sunna, A., & Antranikian, G. (1997). Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17(1), 39–67.CrossRefGoogle Scholar
  3. 3.
    Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37(Database), D233–D238.CrossRefGoogle Scholar
  4. 4.
    Collins, T. C., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiological Reviews, 29(1), 3–23.CrossRefGoogle Scholar
  5. 5.
    Chávez, R., Schachter, K., Navarro, C., Peirano, A., Aguirre, C., Bull, P., & Eyzaguirre, J. (2002). Differences in expression of two endoxylanase genes (xynA and xynB) from Penicillium purpurogenum. Gene, 293(1-2), 161–168.CrossRefGoogle Scholar
  6. 6.
    Belancic, A., Scarpa, J., Peirano, A., Díaz, R., Steiner, J., & Eyzaguirre, J. (1995). Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. Journal of Biotechnology, 41(1), 71–79.CrossRefGoogle Scholar
  7. 7.
    Mardones, W., Di Genova, A., Cortés, M. P., Travisany, D., Maas, A., & Eyzaguirre, J. (2018). The genome sequence of the soft-rot fungus Penicillium purpurogenum reveals a high gene dosage for lignocellulolytic enzymes. Mycology: An International Journal of Fungal Biology, 9(1), 59–69.CrossRefGoogle Scholar
  8. 8.
    Hidalgo, M., Steiner, J., & Eyzaguirre, J. (1992). Beta-glucosidase from Penicillium purpurogenum: purification and properties. Biotechnology and Applied Biochemistry, 15(2), 185–191.Google Scholar
  9. 9.
    Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., & Xu, Y. (2012). dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 40(W1), W445–W451.CrossRefGoogle Scholar
  10. 10.
    Zavaleta, V., & Eyzaguirre, J. (2016). Penicillium purpurogenum produces a highly stable endo-β-(1,4)-galactanase. Applied Biochemistry and Biotechnology, 180(7), 1313–1327.CrossRefGoogle Scholar
  11. 11.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.CrossRefGoogle Scholar
  12. 12.
    Furniss, C. S. M., Williamson, G., & Kroon, P. A. (2005). The substrate specificity and susceptibility to wheat inhibitor proteins of Penicillium funiculosum xylanases from a commercial enzyme preparation. Journal of the Science of Food and Agriculture, 85(4), 574–582.CrossRefGoogle Scholar
  13. 13.
    Dimarogona, M., Topakas, E., Christakopoulos, P., & Chrysina, E. D. (2012). The structure of a GH10 xylanase from Fusarium oxysporum reveals the presence of an extended loop on top of the catalytic cleft. Acta Crystallographica Section D, Biological Crystallography, 68(7), 735–742.CrossRefGoogle Scholar
  14. 14.
    Kupfer, D. M., Drabenstot, S. D., Buchanan, K. L., Lai, H., Zhu, H., Dyer, D. W., Roe, B. A., & Murphy, J. W. (2004). Introns and splicing elements of five diverse fungi. Eukaryotic Cell, 3(5), 1088–1100.CrossRefGoogle Scholar
  15. 15.
    Yin, X., Gong, Y.-Y., Wang, J.-Q., Tang, C.-D., & Wu, M.-C. (2013). Cloning and expression of a family 10 xylanase gene (Aoxyn10) from Aspergillus oryzae in Pichia pastoris. Journal of General and Applied Microbiology, 59(6), 405–415.CrossRefGoogle Scholar
  16. 16.
    Kishishita, S., Yoshimi, M., Fujii, T., Taylor II, L. E., Decker, S. R., Ishikawa, K., & Inoue, H. (2014). Cellulose-inducible xylanase Xyl10A from Acremonium cellulolyticus: purification, cloning and homologous expression. Protein Expression and Purification, 94, 40–45.CrossRefGoogle Scholar
  17. 17.
    Fan, G., Yang, S., Yan, Q., Guo, Y., Li, Y., & Jiang, Z. (2014). Characterization of a highly thermostable glycoside hydrolase family10 xylanase from Malbranchea cinnamomea. International Journal of Biological Macromolecules, 70, 482–489.CrossRefGoogle Scholar
  18. 18.
    Biely, P., Vrsanska, M., Tenkanen, M., & Kluepfel, D. (1997). Endo-β-1,4-xylanase families: differences in catalytic properties. Journal of Biotechnology, 57(1-3), 151–166.CrossRefGoogle Scholar
  19. 19.
    Ribeiro, L. F. C., De Lucas, R. C., Vitcosque, G. L., Ribeiro, L. F., Ward, R. J., Rubio, M. V., Damásio, A. R. L., Squina, F. M., Gregory, R. C., Walton, P. H., Jorge, J. A., Prade, R. A., Buckeridge, M. S., & Polizeli, M. d. L. T. M. (2014). A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnology for Biofuels, 7(1), 115.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciencias BiológicasUniversidad Andrés BelloSantiagoChile

Personalised recommendations