Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 3, pp 731–749 | Cite as

Study on Lipid Accumulation in Novel Oleaginous Yeast Naganishia liquefaciens NITTS2 Utilizing Pre-digested Municipal Waste Activated Sludge: a Low-cost Feedstock for Biodiesel Production

  • P. Selvakumar
  • P. Sivashanmugam
Article

Abstract

The economical production of lipids is considered as an appropriate renewable alternative feedstock for biodiesel production because of the contemporary concerns on fuel crisis, climate change and food security. In this study, lipid accumulation potential of a novel oleaginous yeast isolate Naganishia liquefaciens NITTS2 by utilizing pre-digested municipal waste activated sludge (PWAS) was explored. Optimization of culture conditions was performed using response surface methodology coupled with genetic algorithm and maximum lipid content of 55.7% was obtained. The presence of lipid was visually confirmed by fluorescence microscopy and its characteristic profile was determined by GC-MS. The yeast lipid was recovered and converted into biodiesel by garbage lipase with the efficiency of 88.34 ± 1.2%, which was further analyzed by proton nuclear magnetic resonance spectroscopy. Hence, the results of this study strongly suggest the possibility of using PWAS as an efficient and low-cost resource for the production of biodiesel from the oleaginous yeast.

Keywords

Naganishia liquefaciens NITTS2 Municipal waste activated sludge Optimization Yeast lipids Garbage lipase Biodiesel production 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2777_MOESM1_ESM.docx (119 kb)
ESM 1 (DOCX 119 kb)

References

  1. 1.
    Luque, R., Lovett, J. C., Datta, B., Clancy, J., Campelo, J. M., & Romeroa, A. A. (2010). Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy & Environmental Science, 3, 1706–1721.  https://doi.org/10.1039/C0EE00085J.CrossRefGoogle Scholar
  2. 2.
    Zhang, X., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2013). Energy balance and greenhouse gas emissions of biodiesel production from oil derived from wastewater and wastewater sludge. Renewable Energy, 55, 392–403.  https://doi.org/10.1016/j.renene.2012.12.046.CrossRefGoogle Scholar
  3. 3.
    Lal, B., & Sarma, P. (2009). Wealth from waste trends and technologies. TERI Press.Google Scholar
  4. 4.
    Venkatesagowda, B., Ponugupaty, E., Barbosa-Dekker, A. M., & Dekker, R. F. H. (2017). The purification and characterization of lipases from Lasiodiplodia theobromae, and their immobilization and use for biodiesel production from coconut oil. Applied Biochemistry and Biotechnology.  https://doi.org/10.1007/s12010-017-2670-6.CrossRefGoogle Scholar
  5. 5.
    Poppe, J. K., Matte, C. R., Fernandez-Lafuente, R., Rodrigues, R. C., & Ayub, M. A. Z. (2018). Transesterification of waste frying oil and soybean oil by combi-lipases under ultrasound-assisted reactions. Applied Biochemistry and Biotechnology.  https://doi.org/10.1007/s12010-018-2763-x.
  6. 6.
    Karatay, S. E., & Donmez, G. (2010). Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresource Technology, 101(20), 7988–7990.  https://doi.org/10.1016/j.biortech.2010.05.054.CrossRefPubMedGoogle Scholar
  7. 7.
    Kwon, E. E., Kim, S., Jeon, Y. J., & Yim, H. (2012). Biodiesel production from sewage sludge: new paradigm for mining energy from municipal hazardous material. Environmental Science and Technology, 46(18), 10222–10228.  https://doi.org/10.1021/es3019435.CrossRefPubMedGoogle Scholar
  8. 8.
    Sitepu, I. R., Garay, L. A., Sestric, R., Levin, D., Block, D. E., Germanm, J. B., & Boundy-Mills, K. L. (2014). Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnology Advances, 32(7), 1336–1360.  https://doi.org/10.1016/j.biotechadv.2014.08.003.CrossRefPubMedGoogle Scholar
  9. 9.
    Lopes da Silva, T., Feijao, D., Roseiro, J. C., & Reism, A. (2011). Monitoring Rhodotorula glutinis CCMI 145 physiological response and oil production growing on xylose and glucose using multi-parameter flow cytometry. Bioresource Technology, 102(3), 2998–3006.  https://doi.org/10.1016/j.biortech.2010.10.008.CrossRefGoogle Scholar
  10. 10.
    Botham, P. A., & Ratledge, C. A. (1979). A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms. Journal of General Microbiology, 114(2), 361–375.  https://doi.org/10.1099/00221287-114-2-361.CrossRefPubMedGoogle Scholar
  11. 11.
    He, M. Q., Hu, X., Gou, X., Liu, Q., Li, K., Pan, Q., & Zhu Wu, J. (2010). Screening of oleaginous yeast with xylose assimilating capacity for lipid and bio-ethanol production. African Journal of Biotechnology, 9, 8392–8397.Google Scholar
  12. 12.
    Probst, K. V., Schulte, L. R., Durrett, T. P., Rezac, M. E., & Vadlani, P. V. (2015). Oleaginous yeast: a value-added platform for renewable oils. Critical Reviews in Biotechnology, 36(5), 942–955.  https://doi.org/10.3109/07388551.2015.1064855.CrossRefPubMedGoogle Scholar
  13. 13.
    Sanchez, M. A., Ceron Garcia, M. C., Contreras Gomez, A., Garcia Camacho, F., Molina Grima, E., & Chisti, Y. (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 16(3), 287–297.  https://doi.org/10.1016/S1369-703X(03)00072-X.CrossRefGoogle Scholar
  14. 14.
    Peccia, J., & Westerhoff, P. (2015). We should expect more out of our sewage sludge. Environmental Science and Technology, 49(14), 8271–8276.  https://doi.org/10.1021/acs.est.5b01931.CrossRefPubMedGoogle Scholar
  15. 15.
    Carrere, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenes, J. P., Steyer, J. P., & Ferrer, I. (2010). Pretreatment methods to improve sludge anaerobic degradability: a review. Journal of Hazardous Materials, 183(1–3), 1–15.  https://doi.org/10.1016/j.jhazmat.2010.06.129.CrossRefPubMedGoogle Scholar
  16. 16.
    Selvakumar, P., & Sivashanmugam, P. (2018). Multi-hydrolytic biocatalyst from organic solid waste and its application in municipal waste activated sludge pre-treatment towards energy recovery. Process Safety and Environmental Protection, 117, 1–10.  https://doi.org/10.1016/j.psep.2018.03.036.CrossRefGoogle Scholar
  17. 17.
    Leiva-Candia, D. E., Pinzi, S., Redel-Macias, M. D., Koutinas, A., Colin Webb, C., & Dorado, M. P. (2014). The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel, 123, 33–42.  https://doi.org/10.1016/j.fuel.2014.01.054.CrossRefGoogle Scholar
  18. 18.
    Soufi, M. D., Ghobadian, B., Najafi, G., Mousavi, S. M., & Aubin, J. (2017). Optimization of methyl ester production from waste cooking oil in a batch tri-orifice oscillatory baffled reactor. Fuel Processing Technology, 167, 641–647.  https://doi.org/10.1016/j.fuproc.2017.07.030.CrossRefGoogle Scholar
  19. 19.
    Selvakumar, P., Kavitha, S., & Sivashanmugam, P. (2018). Optimization of process parameters for efficient bioconversion of thermo-chemo pretreated Manihot esculenta crantz YTP1 stem to ethanol. Waste and Biomass Valorization.  https://doi.org/10.1007/s12649-018-0244-7.
  20. 20.
    Anand, K., & Elangovan, S. (2017). Optimizing the ultrasonic inserting parameters to achieve maximum pull-out strength using response surface methodology and genetic algorithm integration technique. Measurement, 99, 145–154.  https://doi.org/10.1016/j.measurement.2016.12.025.CrossRefGoogle Scholar
  21. 21.
    Yanh, Y., Yan, M., & Hu, B. (2014). Endophytic fungal strains of soybean for lipid production. Bioenergy Research, 7(1), 353–361.  https://doi.org/10.1007/s12155-013-9377-5.CrossRefGoogle Scholar
  22. 22.
    Selvakumar, P., & Sivashanmugam, P. (2017). Thermo-chemo-sonic pre-digestion of waste activated sludge for yeast cultivation to extract lipids for biodiesel production. Journal of Environmental Management, 198(1), 90–98.  https://doi.org/10.1016/j.jenvman.2017.04.064.CrossRefPubMedGoogle Scholar
  23. 23.
    Mouget, J. L., Rosa, P., & Tremblin, G. (2004). Acclimation of Haslea ostrearia to light of different spectral qualities confirmation of chromatic adaptation in diatoms. Journal of Photochemistry and Photobiology B: Biology, 75(1–2), 1–11.  https://doi.org/10.1016/j.jphotobiol.2004.04.002.CrossRefGoogle Scholar
  24. 24.
    Zhang, X., Yan, S., Tyagi, R. D., Drogui, P., & Surampalli, R. Y. (2014). Ultrasonication assisted lipid extraction from oleaginous microorganisms. Bioresource Technology, 158, 253–261.  https://doi.org/10.1016/j.biortech.2014.01.132.CrossRefPubMedGoogle Scholar
  25. 25.
    Selvakumar, P., & Sivashanmugam, P. (2017). Optimization of lipase production from organic solid waste by anaerobic digestion and its application in biodiesel production. Fuel Processing Technology, 165, 1–8.  https://doi.org/10.1016/j.fuproc.2017.04.020.CrossRefGoogle Scholar
  26. 26.
    Vicentea, G., Bautista, L. F., Rodriguez, R., Gutierrez, F. J., Sadaba, I., Ruiz-Vazquezb Ros, M., Torres-Martinez, S., & Garre, V. (2009). Biodiesel production from biomass of an oleaginous fungus. Biochemical Engineering Journal, 48(1), 22–27.  https://doi.org/10.1016/j.bej.2009.07.014.CrossRefGoogle Scholar
  27. 27.
    DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.CrossRefGoogle Scholar
  28. 28.
    Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1–5.  https://doi.org/10.1016/j.renene.2008.04.014.CrossRefGoogle Scholar
  29. 29.
    Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C., & Nicaud, J. M. (2009). Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research, 48(6), 375–387.  https://doi.org/10.1016/j.plipres.2009.08.005.CrossRefPubMedGoogle Scholar
  30. 30.
    Bruno, W. J., Socci, N. D., & Halpern, A. L. (2000). Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Molecular Biology and Evolution, 17(1), 189–197.  https://doi.org/10.1093/oxfordjournals.molbev.a026231.CrossRefPubMedGoogle Scholar
  31. 31.
    Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In Mammalian protein metabolism (Vol. 3, pp. 21–132). New York: Academic Press.  https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.CrossRefGoogle Scholar
  32. 32.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.CrossRefGoogle Scholar
  33. 33.
    Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493–507.  https://doi.org/10.1007/s10811-008-9392-7.CrossRefGoogle Scholar
  34. 34.
    Jawaharraj, K., Karpagam, R., Ashokkumar, B., Kathiresan, S., Moorthy, I. M. G., Arumugam, M., & Varalakshmi, P. (2017). Improved biomass and lipid production in Synechocystis sp. NN using industrial wastes and nano-catalyst coupled transesterification for biodiesel production. Bioresource Technology, 242, 128–132.  https://doi.org/10.1016/j.biortech.2017.03.067.CrossRefPubMedGoogle Scholar
  35. 35.
    Uma, R. R., Kaliappan, S., Adish Kumar, S., & Rajesh Banu, J. (2012). Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge. Bioresource Technology, 126, 107–116.  https://doi.org/10.1016/j.biortech.2012.09.027.CrossRefGoogle Scholar
  36. 36.
    Xu, J., Du, W., Zhao, X., Zhang, G., & Liu, D. (2013). Microbial oil production from various carbon sources and its use for biodiesel preparation. Biofuels, Bioproducts and Biorefining, 7(1), 65–77.  https://doi.org/10.1002/bbb.1372.CrossRefGoogle Scholar
  37. 37.
    Kock, J. L., & Ratledge, C. (1993). Changes in lipid composition and arachidonic acid turnover during the life cycle of the yeast Dipodascopsis uninucleata. Journal of General Microbiology, 139(3), 459–464.  https://doi.org/10.1099/00221287-139-3-459.CrossRefPubMedGoogle Scholar
  38. 38.
    Papanikolaou, S., Sarantou, S., Komaitis, M., & Aggelis, G. (2004). Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. Journal of Applied Microbiology, 97(4), 867–875.  https://doi.org/10.1111/j.1365-2672.2004.02376.x.CrossRefPubMedGoogle Scholar
  39. 39.
    Hansson, L., & Dostalek, M. (1986). Influence of cultivation conditions on lipid production by Cryptococcus albidus. Applied Microbiology and Biotechnology, 24(1), 12–18.  https://doi.org/10.1007/BF00266278.CrossRefGoogle Scholar
  40. 40.
    Deeba, F., Pruthi, V., & Negi, Y. S. (2016). Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresource Technology, 213, 96–102.  https://doi.org/10.1016/j.biortech.2016.02.105.CrossRefPubMedGoogle Scholar
  41. 41.
    Liang, Y., Jarosz, K., Wardlow, A. T., Zhang, J., & Cui, Y. (2014). Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment. Applied Biochemistry and Biotechnology, 173(8), 2086–2098.  https://doi.org/10.1007/s12010-014-1007-y.CrossRefPubMedGoogle Scholar
  42. 42.
    Araujo, G. S., Matos, L. J. B. L., Fernandes, J. O., Cartaxo, S. J. M., Gonçalves, L. R. B., Fernandes, F. A. N., & Farias., W. R. L. (2013). Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrasonics Sonochemistry, 20(1), 95–98.  https://doi.org/10.1016/j.ultsonch.2012.07.027.CrossRefGoogle Scholar
  43. 43.
    Jin, F., Kawasaki, K., Kishida, H., Tohji, K., Moriya, T., & Enomoto, H. (2007). NMR spectroscopy study on methanolysis reaction of vegetable oil. Fuel, 86(7–8), 1201–1207.  https://doi.org/10.1016/j.fuel.2006.10.013.CrossRefGoogle Scholar
  44. 44.
    Tariq, M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., & Khan, M. A. (2011). Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology, 92(3), 336–341.  https://doi.org/10.1016/j.fuproc.2010.09.025.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations