Applied Biochemistry and Biotechnology

, Volume 186, Issue 3, pp 681–691 | Cite as

Synthesis of a Fucosylated Trisaccharide Via Transglycosylation by α-l-Fucosidase from Thermotoga maritima

  • Francisco Guzmán-Rodríguez
  • Sergio Alatorre-Santamaría
  • Lorena Gómez-Ruiz
  • Gabriela Rodríguez-Serrano
  • Mariano García-Garibay
  • Alma Cruz-GuerreroEmail author


Fucosylated oligosaccharides, such as 2′-fucosyllactose in human milk, have important biological functions such as prebiotics and preventing infection. In this work, the effect of an acceptor substrate (lactose) and the donor substrate 4-nitrophenyl-α-l-fucopyranoside (pNP-Fuc) on the synthesis of a fucosylated trisaccharide was studied in a transglycosylation reaction using α-l-fucosidase from Thermotoga maritima. Conducting a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), it was demonstrated that synthesized oligosaccharide corresponded to a fucosylated trisaccharide, and high-performance liquid chromatography (HPLC) of the hydrolyzed compound confirmed it was fucosyllactose. As the concentration of the acceptor substrate increased, the concentration and synthesis rate of the fucosylated trisaccharide also increased, and the highest concentration obtained was 0.883 mM (25.2% yield) when using the higher initial lactose concentration (584 mM). Furthermore, the lower donor/acceptor ratio had the highest synthesis, so at the molar ratio of 0.001, a concentration of 0.286 mM was obtained (32.5% yield).


Fucosyllactose Transglycosylation Fucosidase Thermotoga maritima 


Funding information

This work was supported by Consejo Nacional de Ciencia y Tecnología (financial support number 50370).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Li, M., Liu, X.-W., Shao, J., Shen, J., Jia, Q., Yi, W., Song, J. K., Woodward, R., Chow, C. S., & Wang, P. G. (2008). Characterization of a novel α1,2-fucosyltransferase of Escherichia coli O128:B12 and functional investigation of its common motif. Biochemistry, 47(1), 378–387.CrossRefGoogle Scholar
  2. 2.
    Venditti, J. J., Swann, J. M., & Bean, B. S. (2010). Hamster sperm-associated alpha-L-fucosidase functions during fertilization. Biology of Reproduction, 82(3), 572–579.CrossRefGoogle Scholar
  3. 3.
    Bode, L. (2009). Human milk oligosaccharides: prebiotics and beyond. Nutrition Reviews, 67(11), S183–S191.CrossRefGoogle Scholar
  4. 4.
    Ninonuevo, M. R., Park, Y., Yin, H. F., Zhang, J. H., Ward, R. E., Clowers, B. H., German, J. B., Freeman, S. L., Killeen, K., Grimm, R., & Lebrilla, C. B. (2006). A strategy for annotating the human milk glycome. Journal of Agricultural and Food Chemistry, 54(20), 7471–7480.CrossRefGoogle Scholar
  5. 5.
    Crane, J. K., Azar, S. S., Stam, A., & Newburg, D. S. (1994). Oligosaccharides from human milk block binding and activity of the Escherichia coli heat-stable enterotoxin (STa) in T84 intestinal cells. The Journal of Nutrition, 124(12), 2358–2364.CrossRefGoogle Scholar
  6. 6.
    Lee, W.-H., Pathanibul, P., Quarterman, J., Jo, J.-H., Han, N. S., Miller, M. J., Jin, Y.-S., & Seo, J.-H. (2012). Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli. Microbial Cell Factories, 1148–48, 11, 1.Google Scholar
  7. 7.
    Weichert, S., Jennewein, S., Hüfner, E., Weiss, C., Borkowski, J., Putze, J., & Schroten, H. (2013). Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutrition Research, 33(10), 831–838.CrossRefGoogle Scholar
  8. 8.
    Thurl, S., Munzert, M., Boehm, G., Matthews, C., & Stahl, B. (2017). Systematic review of the concentrations of oligosaccharides in human milk. Nutrition Reviews, 75(11), 920–933.CrossRefGoogle Scholar
  9. 9.
    Newburg, D. S. (2009). Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. Journal of Animal Science, 87(13), 26–34.CrossRefGoogle Scholar
  10. 10.
    Morrow, A. L., Ruiz-Palacios, G. M., Altaye, M., Jiang, X., Guerrero, M. L., Meinzen-Derr, J. K., Farkas, T., Chaturvedi, P., Pickering, L. K., & Newburg, D. S. (2004). Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. The Journal of Pediatrics, 145(3), 297–303.CrossRefGoogle Scholar
  11. 11.
    McVeagh, P., & Miller, J. B. (1997). Human milk oligosaccharides: only the breast. Journal of Paediatrics and Child Health, 33(4), 281–286.CrossRefGoogle Scholar
  12. 12.
    Gabrielli, O., Zampini, L., Galeazzi, T., Padella, L., Santoro, L., Peila, C., Giuliani, F., Bertino, E., Fabris, C., & Coppa, G. V. (2011). Preterm milk oligosaccharides during the first month of lactation. Pediatrics, 128(6), E1520–E1531.CrossRefGoogle Scholar
  13. 13.
    David, B. G., & Hancock, S. M. (2003). The uses of glycoprocessing enzymes in synthesis. In H. M. I. Osborne (Ed.), Best synthetic methods, vol: The uses of glycoprocessing enzymes in synthesis (pp. 385–426). U. S. A.: Academic Press.Google Scholar
  14. 14.
    Abdul Manas, N. H., Jonet, M. A., Abdul Murad, A. M., Mahadi, N. M., & Illias, R. M. (2015). Modulation of transglycosylation and improved malto-oligosaccharide synthesis by protein engineering of maltogenic amylase from Bacillus lehensis G1. Process Biochemistry, 50(10), 1572–1580.CrossRefGoogle Scholar
  15. 15.
    Pérez-Sánchez, M., Cortés Cabrera, Á., García-Martín, H., Sinisterra, J. V., García, J. I., & Hernáiz, M. J. (2011). Improved synthesis of disaccharides with Escherichia coli β-galactosidase using bio-solvents derived from glycerol. Tetrahedron, 67(40), 7708–7712.CrossRefGoogle Scholar
  16. 16.
    Benešová, E., Lipovova, P., Dvorakova, H., & Kralova, B. (2013). Alpha-L-fucosidase from Paenibacillus thiaminolyticus: its hydrolytic and transglycosylation abilities. Glycobiology, 23(9), 1052–1065.CrossRefGoogle Scholar
  17. 17.
    Escamilla-Lozano, Y. (2011). Síntesis de oligosacáridos fucosilados por vía enzimática mediante reacciones de fucosilación. PhD thesis. In Universidad Autónoma Metropolitana. Mexico: Ciudad de México.Google Scholar
  18. 18.
    Rodriguez-Diaz, J., Carbajo, R. J., Pineda-Lucena, A., Monedero, V., & Yebra, M. J. (2013). Synthesis of fucosyl-N-acetylglucosamine disaccharides by transfucosylation using alpha-L-fucosidases from Lactobacillus casei. Applied and Environmental Microbiology, 79(12), 3847–3850.CrossRefGoogle Scholar
  19. 19.
    Crout, D. H. G., & Vic, G. (1998). Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Current Opinion in Chemical Biology, 2(1), 98–111.CrossRefGoogle Scholar
  20. 20.
    Albayrak, N., & Yang, S. T. (2002). Production of galacto-oligosaccharides from lactose by Aspergillus oryzae beta-galactosidase immobilized on cotton cloth. Biotechnology and Bioengineering, 77(1), 8–19.CrossRefGoogle Scholar
  21. 21.
    Cardelle-Cobas, A., Villamiel, M., Olano, A., & Corzo, N. (2008). Study of galacto-oligosaccharide formation from lactose using pectinex ultra SP-L. Journal of the Science of Food and Agriculture, 88(6), 954–961.CrossRefGoogle Scholar
  22. 22.
    Rodriguez-Diaz, J., Monedero, V., & Yebra, M. J. (2011). Utilization of natural fucosylated oligosaccharides by three novel alpha-L-fucosidases from a probiotic Lactobacillus casei strain. Applied and Environmental Microbiology, 77(2), 703–705.CrossRefGoogle Scholar
  23. 23.
    Tarling, C. A., He, S., Sulzenbacher, G., Bignon, C., Bourne, Y., Henrissat, B., & Withers, S. G. (2003). Identification of the catalytic nucleophile of the family 29 alpha-L-fucosidase from Thermotoga maritima through trapping of a covalent glycosyl-enzyme intermediate and mutagenesis. The Journal of Biological Chemistry, 278(48), 47394–47399.CrossRefGoogle Scholar
  24. 24.
    Zeuner, B., Jers, C., Mikkelsen, J. D., & Meyer, A. S. (2014). Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. Journal of Agricultural and Food Chemistry, 62(40), 9615–9631.CrossRefGoogle Scholar
  25. 25.
    Gosling, A., Stevens, G. W., Barber, A. R., Kentish, S. E., & Gras, S. L. (2011). Effect of the substrate concentration and water activity on the yield and rate of the transfer reaction of β-galactosidase from Bacillus circulans. Journal of Agricultural and Food Chemistry, 59(7), 3366–3372.CrossRefGoogle Scholar
  26. 26.
    Sulzenbacher, G., Bignon, C., Nishimura, T., Tarling, C. A., Withers, S. G., Henrissat, B., & Bourne, Y. (2004). Crystal structure of Thermotoga maritima alpha-L-fucosidase—insights into the catalytic mechanism and the molecular basis for fucosidosis. The Journal of Biological Chemistry, 279(13), 13119–13128.CrossRefGoogle Scholar
  27. 27.
    Ajisaka, K., Fujimoto, H., & Miyasato, M. (1998). An alpha-L-fucosidase from Penicillium multicolor as a candidate enzyme for the synthesis of alpha (1-->3)-linked fucosyl oligosaccharides by transglycosylation. Carbohydrate Research, 309(1), 125–129.CrossRefGoogle Scholar
  28. 28.
    Zeuner, B., Muschiol, J., Holck, J., Lezyk, M., Gedde, M. R., Jers, C., Mikkelsen, J. D., & Meyer, A. S. (2018). Substrate specificity and transfucosylation activity of GH29 α-l-fucosidases for enzymatic production of human milk oligosaccharides. New Biotechnology, 41, 34–45.CrossRefGoogle Scholar
  29. 29.
    Lezyk, M., Jers, C., Kjaerulff, L., Gotfredsen, C. H., Mikkelsen, M. D., & Mikkelsen, J. D. (2016). Novel alpha-L-fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides. PLoS One, 11(1), e0147438.CrossRefGoogle Scholar
  30. 30.
    Chin, Y. W., Seo, N., Kim, J. H., & Seo, J. H. (2016). Metabolic engineering of Escherichia coli to produce 2′-fucosyllactose via salvage pathway of guanosine 5′-diphosphate (GDP)-L-fucose. Biotechnology and Bioengineering, 113(11), 2443–2452.CrossRefGoogle Scholar
  31. 31.
    Osanjo, G., Dion, M., Drone, J., Solleux, C., Tran, V., Rabiller, C., & Tellier, C. (2007). Directed evolution of the alpha-L-fucosidase from Thermotoga maritima into an alpha-L-transfucosidase. Biochemistry, 46(4), 1022–1033.CrossRefGoogle Scholar
  32. 32.
    Sotgiu, S., Arru, G., Fois, M. L., Sanna, A., Musumeci, M., Rosati, G., & Musumeci, S. (2006). Immunomodulation of fucosyl-lactose and lacto-N-fucopentaose on mononuclear cells from multiple sclerosis and healthy subjects. International Journal of Biomedical Sciences, 2(2), 114–120.Google Scholar
  33. 33.
    Bode, L. (2012). Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology, 22(9), 1147–1162.CrossRefGoogle Scholar
  34. 34.
    Wojciechowska, A., Klewicki, R., Sojka, M., & Grzelak-Blaszczyk, K. (2018). Application of transgalactosylation activity of β-galactosidase from Kluyveromyces lactis for the synthesis of ascorbic acid galactoside. Applied Biochemistry and Biotechnology, 184(1), 386–400.CrossRefGoogle Scholar
  35. 35.
    Petschacher, B., & Nidetzky, B. (2016). Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. Journal of Biotechnology, 23561–83.Google Scholar
  36. 36.
    Warmerdam, A., Wang, J., Boom, R. M., & Janssen, A. E. (2013). Effects of carbohydrates on the oNPG converting activity of beta-galactosidases. Journal of Agricultural and Food Chemistry, 61(26), 6458–6464.CrossRefGoogle Scholar
  37. 37.
    Murata, T., Morimoto, S., Zeng, X., Watanabe, S., & Usui, T. (1999). Enzymatic synthesis of α-l-fucosyl-N-acetyllactosamines and 3′-O-α-l-fucosyllactose utilizing α-l-fucosidases. Carbohydrate Research, 320(3), 192–199.CrossRefGoogle Scholar
  38. 38.
    Suwasono, S., & Rastall, R. A. (1998). Synthesis of oligosaccharides using immobilised 1,2-alpha-mannosidase from Aspergillus phoenicis: Immobilisation-dependent modulation of product spectrum. Biotechnology Letters, 20(1), 15–17.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de BiotecnologíaUniversidad Autónoma Metropolitana-IztapalapaMexico CityMexico
  2. 2.Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la SaludUniversidad Autónoma MetropolitanaLerma de VilladaMexico

Personalised recommendations