Applied Biochemistry and Biotechnology

, Volume 187, Issue 2, pp 628–648 | Cite as

Antimicrobial Potential of Fungal Endophytes from Moringa oleifera

  • Daljit Singh AroraEmail author
  • Navdeep Kaur


The present study was aimed to isolate the endophytic fungi having antimicrobial potential from Moringa oleifera. Out of the active isolates, the endophytic fungal isolate DSE 17 obtained from the bark of the plant was selected for further studies and identified as Aspergillus fumigatus. The classical method for optimization strategy revealed inoculum size of four discs in Czapek dox’s medium at a temperature of 25 °C and pH 7 with the incubation period of 6 days to be the best. Sucrose as carbon source (1%) and sodium nitrate as nitrogen source (0.2%) were found to be the best for antimicrobial activity. Response surface methodology was effective in optimizing the selected medium components in Plackett–Burman design, i.e. magnesium sulphate, dipotassium phosphate and sodium nitrate, which resulted in increase in antimicrobial activity by 1.7-fold. Chloroform was found to be the best extractant amongst different solvents. The minimum inhibitory concentration (MIC) values of the chloroformic extract ranged from 0.05 to 0.5 mg/ml, and the viable cell count studies revealed it to be bactericidal in its nature. The post-antibiotic effect (PAE) of the chloroformic extracts ranged from 2 to 20 h. Ames mutagenicity testing and MTT assay revealed the crude extract neither cytotoxic nor mutagenic, thus showing it to be biosafe. Thus, the study suggests that endophytes from this miracle plant could be potential source for the production of broad-spectrum antimicrobial compound/s.


Endophytes Antimicrobial Moringa oleifera Biosafety 


Authors’ Contributions

DSA, as a principle investigator (PI), contributed substantially in the interpretation of data. NK performed the experimental work. Both the authors contributed in designing the experiments and drafting the manuscript.

Funding Information

The authors are thankful to the University Grants Commission (UGC), New Delhi, for providing financial assistance in the form of Major Research Project (MRP) sanctioned to Daljit Singh Arora.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

Not applicable.

Informed Consent

This article does not contain any studies with human participants performed by any of the authors, so the consent to participate is not applicable.

Consent for Publication

Not applicable.

Supplementary material

12010_2018_2770_Fig13_ESM.png (4.2 mb)

(PNG 4.16 mb)

12010_2018_2770_MOESM1_ESM.tif (5.1 mb)
High-resolution image (TIF 5203 kb)


  1. 1.
    Santo, I. P. D., & Silva, L. C. N. D. (2015). Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Frontiers in Microbiology, 6, 350. Scholar
  2. 2.
    Bockstael, K., & Aerschot, A. V. (2009). Antimicrobial resistance in bacteria. Central European Journal of Medicine, 4, 141–155.Google Scholar
  3. 3.
    Zhao, S., White, D. G., & Beilei, G. E. (2001). Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Applied and Environmental Microbiology, 67(4), 1558–1564.CrossRefGoogle Scholar
  4. 4.
    Hamid, A. A., & Aiyelaagbe, O. O. (2011). Preliminary phytochemical, antibacterial and antifungal properties of Alafia barteri stem grown in Nigeria. European Journal of Medicinal Plants, 1(2), 26–32.CrossRefGoogle Scholar
  5. 5.
    Basha, N. S., Ogbaghebriel, A., Yemane, K., & Zenebe, M. (2012). Isolation and screening of endophytic fungi from Eritrean traditional medicinal plant Terminalia brownii leaves for antimicrobial activity. International Journal of Green Pharmacy, 6(1), 40–44.CrossRefGoogle Scholar
  6. 6.
    Sunaryanto, R., & Mahsunah, A. H. (2013). Isolation, purification, and characterization of antimicrobial substances from endophytic actinomycetes. Makara Journal of Science, 17, 87–92.Google Scholar
  7. 7.
    Ratnaweera, P. B., Silva, E. D., Williams, D. E., & Andersen, R. J. (2015). Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complementary and Alternative Medicine, 15(1), 220. Scholar
  8. 8.
    El-Gendy, M. M. A. A., Yahya, S. M., Hamed, A. R., Soltan, M. M., & El-Bondkly, A. M. A. (2018). Phylogenetic analysis and biological evaluation of marine endophytic fungi derived from Red Sea sponge Hyrtios erectus. Applied Biochemistry and Biotechnology, 1–23.
  9. 9.
    Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X., & Zhou, J. (2008). Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Applied Microbiology and Biotechnology, 78(2), 241–247.CrossRefGoogle Scholar
  10. 10.
    Garyali, S., Kumar, A., & Reddy, M. S. (2013). Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. Journal of Microbiology and Biotechnology, 23(10), 1372–1380.CrossRefGoogle Scholar
  11. 11.
    Arora, D. S., Onsare, J. G., & Kaur, H. (2013). Bioprospecting of Moringa (Moringaceae): microbiological perspective. Journal of Pharmacognosy and Phytochemistry, 1, 193–215.Google Scholar
  12. 12.
    Onsare, J. G., Kaur, H., & Arora, D. S. (2013). Antimicrobial activity of Moringa oleifera from different locations against some human pathogens. Academia Journal of Medicinal Plants, 1, 80–91.Google Scholar
  13. 13.
    Khalil, W. K. B., Ghaly, I. S., Diab, K. A. E., & ELmakawy, A. I. (2014). Antitumor activity of Moringa oleifera leaf extract against Ehrlich solid tumor. International Journal of Pharmacy, 4, 68–82.Google Scholar
  14. 14.
    Mbikay, M. (2012). Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: a review. Frontiers in Pharmacology, 3.
  15. 15.
    Mengistu, M., Abebe, Y., Mekonnen, Y., & Tolessa, T. (2012). In vivo and in vitro hypotensive effect of aqueous extract of Moringa stenopetala. African Health Sciences, 12(4), 545–551.Google Scholar
  16. 16.
    Ke, Y., Chen, Z., Ma, J. B., Huang, X. M., & Zeng, S. R. (2006). Studies of isolation of endophytic fungi from Moringa sp. and antibiotic active substance produced by the Aspergillus sp. ly14. Journal-Hunan Agricultural University, 32, 521.Google Scholar
  17. 17.
    Zhao, J. H., Zhang, Y. L., Wang, L. W., Wang, J. Y., & Zhang, C. L. (2012). Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World Journal of Microbiology and Biotechnology, 28(5), 2107–2112.CrossRefGoogle Scholar
  18. 18.
    Lu, Y., Chen, C., Chen, H., Zhang, J., & Chen, W. (2012). Isolation and identification of endophytic Fungi from Actinidia macrosperma and investigation of their bioactivities. Evidence-Based Complementary and Alternative Medicine.
  19. 19.
    Gao, H., Liu, M., Liu, J., Dai, H., Zhou, X., Liu, X., Zhuo, Y., Zhang, W., & Zhang, L. (2009). Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12 A using response surface methodology. Bioresource Technology, 100, 4012–4016.CrossRefGoogle Scholar
  20. 20.
    Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175.CrossRefGoogle Scholar
  21. 21.
    Arora, D. S., Nim, L., & Kaur, H. (2016). Antimicrobial potential of Callistemon lanceolatus seed extract and its statistical optimization. Applied Biochemistry and Biotechnology, 180(2), 289–305.CrossRefGoogle Scholar
  22. 22.
    Arora, D. S., & Onsare, J. G. (2014). In vitro antimicrobial potential, biosafety and bioactive phytoconstituents of Moringa oleifera stem bark. World Journal of Pharmaceutical Research, 3, 2772–2788.Google Scholar
  23. 23.
    Mortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research, 455, 29–60.CrossRefGoogle Scholar
  24. 24.
    Andrade-Linares, D. R., Grosch, R., Franken, P., Rexer, K. H., Kost, G., Restrepo, S., de Garcia, M. C., & Maximova, E. (2011). Colonization of roots of cultivated Solanum lycopersicum by dark septate and other ascomycetous endophytes. Mycologia, 103, 710–721.CrossRefGoogle Scholar
  25. 25.
    Vijayalakshmi, R., Kairunnisa, K., Sivvaswamy, N. S., Dharan, S. S., & Natarajan, S. (2016). Enzyme production and antimicrobial activity of endophytic bacteria isolated from medicinal plants. Indian Journal of Science and Technology, 9.
  26. 26.
    Latgé, J. P. (2001). The pathobiology of Aspergillus fumigatus. Trends in Microbiology, 9(8), 382–389.CrossRefGoogle Scholar
  27. 27.
    Liu, J. Y., Song, Y. C., Zhang, Z., Wang, L., Guo, Z. J., Zou, W. X., & Tan, R. X. (2004). Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. Journal of Biotechnology, 114(3), 279–287.CrossRefGoogle Scholar
  28. 28.
    Furtado, N. A. G. C., Fonseca, M. J. V., & Bastos, J. K. (2005). The potential of an Aspergillus fumigatus Brazilian strain to produce antimicrobial secondary metabolites. Brazilian Journal of Microbiology, 36, 357–362.CrossRefGoogle Scholar
  29. 29.
    Xie, F., Li, X. B., Zhao, J. C., Xu, Q. Q., & Wang, X. N. (2015). Secondary metabolites from Aspergillus fumigatus, an endophytic fungus from the liverwort Heteroscyphus tener (Steph.) Schiffn. Chemistry & Biodiversity, 12, 1313–1321.CrossRefGoogle Scholar
  30. 30.
    Jain, P., & Pundir, R. K. (2010). Effect of different carbon and nitrogen sources on Aspergillus terreus antimicrobial metabolite production. International Journal of Pharmaceutical Sciences Review and Research, 5, 72–76.Google Scholar
  31. 31.
    Kanosh, A. L., Khattab, O. H., Abd-Elrazek, Z. M., & Motawea, H. M. (2010). Broad spectrum antimicrobial agent from local isolate of marine fungus strain. Journal of Applied Sciences Research, 6, 580–588.Google Scholar
  32. 32.
    Merlin, J. N., Christhudas, I. V. S. N., Kumar, P. P., & Agastian, P. (2013). Optimization of growth and bioactive metabolite production: Fusarium solani. Asian Journal of Pharmaceutical and Clinical Research, 6, 98–103.Google Scholar
  33. 33.
    Mathan, S., Vasuki Subramanian, V., & Nagamony, S. (2013). Optimization and antimicrobial metabolite production from endophytic fungi Aspergillus terreus KC 582297. European Journal of Experimental Biology, 3, 138–144.Google Scholar
  34. 34.
    Ramos, H. P., & Said, S. (2011). Modulation of biological activities produced by an endophytic fungus under different culture conditions. Advances in Bioscience and Biotechnology, 2, 443–449.CrossRefGoogle Scholar
  35. 35.
    Jain, P., & Gupta, S. (2012). Effect of carbon and nitrogen sources on antimicrobial metabolite production by endophytic fungus Penicillum sp. against human pathogens. Journal of Pharmacy Research, 5, 4325–4328.Google Scholar
  36. 36.
    Arora, D. S., Kaur, H., Onsare, J. G., & Sharma, V. (2014). Production, ptimization and characterization of antimicrobial compound from Aspergillus sp. International Journal of Pharmacy, 4, 151–171.Google Scholar
  37. 37.
    Rani, R., Sharma, D., Chaturvedi, M., & Yadav, J. P. (2017). Antibacterial activity of twenty different endophytic fungi isolated from Calotropis procera and time kill assay. Clinical Microbiology, 3.
  38. 38.
    Zarrini, G., Bahari-Delgosha, Z., Mollazadeh-Moghaddam, K., & Shahverdi, A. R. (2010). Post-antibacterial effect of thymol. Pharmaceutical Biology, 48(6), 633–636.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Microbial Technology Laboratory, Department of MicrobiologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations