Applied Biochemistry and Biotechnology

, Volume 186, Issue 3, pp 644–661 | Cite as

Statistical Optimization of 1,3-Propanediol (1,3-PD) Production from Crude Glycerol by Considering Four Objectives: 1,3-PD Concentration, Yield, Selectivity, and Productivity

  • Pansuwan Supaporn
  • Sung Ho YeomEmail author


This study investigated the biological conversion of crude glycerol generated from a commercial biodiesel production plant as a by-product to 1,3-propanediol (1,3-PD). Statistical analysis was employed to derive a statistical model for the individual and interactive effects of glycerol, (NH4)2SO4, trace elements, pH, and cultivation time on the four objectives: 1,3-PD concentration, yield, selectivity, and productivity. Optimum conditions for each objective with its maximum value were predicted by statistical optimization, and experiments under the optimum conditions verified the predictions. In addition, by systematic analysis of the values of four objectives, optimum conditions for 1,3-PD concentration (49.8 g/L initial glycerol, 4.0 g/L of (NH4)2SO4, 2.0 mL/L of trace element, pH 7.5, and 11.2 h of cultivation time) were determined to be the global optimum culture conditions for 1,3-PD production. Under these conditions, we could achieve high 1,3-PD yield (47.4%), 1,3-PD selectivity (88.8%), and 1,3-PD productivity (2.1/g/L/h) as well as high 1,3-PD concentration (23.6 g/L).


Crude glycerol Biological conversion 1,3-propanediol Statistical analysis Optimization 


Funding Information

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01060540). We greatly appreciate the support.


  1. 1.
    Go, Y. W., & Yeom, S. H. (2014). Application of pseudo-two phase partitioning bioreactor (P-TPPB) to the production of biodiesel. Bioprocess and Biosystems Engineering, 37(2), 269–275.CrossRefGoogle Scholar
  2. 2.
    Hong, I. K., Jeon, H., & Lee, S. B. (2014). Effect of mixed alcohol reactants on ultrasonic alcoholysis of canola oil. Journal of Industrial and Engineering Chemistry, 20(3), 911–915.CrossRefGoogle Scholar
  3. 3.
    Atadashi, I. M., Aroua, M. K., Abdul, A. R., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: a review. Journal of Industrial and Engineering Chemistry, 19(1), 14–26.CrossRefGoogle Scholar
  4. 4.
    Jeon, D. J., & Yeom, S. H. (2010). Two-step bioprocess employing whole cell and enzyme for economical biodiesel production. Korean Journal of Chemical Engineering, 27(5), 1555–1559.CrossRefGoogle Scholar
  5. 5.
    Jeon, D. J., & Yeom, S. H. (2011). Comparison of methods for preventing methanol inhibition in enzymatic production of biodiesel. Korean Journal of Chemical Engineering, 28(6), 1420–1426.CrossRefGoogle Scholar
  6. 6.
    Yazdani, S. S., & Gonzalez, R. (2007). Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology, 18(3), 213–219.CrossRefGoogle Scholar
  7. 7.
    Moreira, A. B. F., Bruno, A. M., Souza, M. M. V. M., & Manfro, R. L. (2016). Continuous production of lactic acid from glycerol in alkaline medium using supported copper catalysts. Fuel Processing Technology, 144, 170–180.CrossRefGoogle Scholar
  8. 8.
    Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnology. Advances, 27(1), 30–39.CrossRefGoogle Scholar
  9. 9.
    Zeng, A. P., & Biebl, H. (2010). Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Advances in Biochemical Engineering Biotechnology, 74, 239–259.Google Scholar
  10. 10.
    El-Ziney, M. G., Arneborg, N., Uyttendaele, M., Debevere, J., & Jakobsen, M. (1998). Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnology Letters, 20(10), 913–916.CrossRefGoogle Scholar
  11. 11.
    Hiremath, A., Kannabiran, M., & Rangaswamy, V. (2011). 1,3-Propanediol production from crude glycerol from Jatropha biodiesel process. New Biotechnology, 28(1), 19–23.CrossRefGoogle Scholar
  12. 12.
    Biebl, H., Menzel, K., Zeng, A. P., & Deckwer, W. D. (1999). Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology, 52(3), 289–297.CrossRefGoogle Scholar
  13. 13.
    Colin, T., Bories, A., & Moulin, G. (2000). Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Applied Microbiology and Biotechnology, 54(2), 201–205.CrossRefGoogle Scholar
  14. 14.
    Biebl, H. (1991). Glycerol fermentation of 1,3-propanediol by Clostridium butyricum measurement of product inhibition by use of a pH-auxostat. Applied Microbiology and Biotechnology, 35, 701–705.CrossRefGoogle Scholar
  15. 15.
    Hongwen, C., Baishan, F., & Zongding, H. (2005). Optimization of process parameters for key enzymes accumulation of 1,3-propanediol production from Klebsiella pneumoniae. Biochemical Engineering Journal, 25(1), 47–53.CrossRefGoogle Scholar
  16. 16.
    Ji, X. J., Huang, H., Zhu, J. G., Hu, N., & Li, S. (2009). Efficient 1,3-propanediol production by fed-batch culture of Klebsiella Pneumoniae: The role of pH fluctuation. Applied Biochemistry and Biotechnology, 159(3), 605–613.CrossRefGoogle Scholar
  17. 17.
    Jun, S. A., Moon, C., Kang, C. H., Kong, S. W., Sang, B. I., & Um, Y. S. (2010). Microbial fed-batch production of 1,3-Propanediol using raw glycerol with suspended and immobilized Klebsiella pneumonia. Applied Biochemistry and Biotechnology, 161(1-8), 491–501.CrossRefGoogle Scholar
  18. 18.
    Xue, X., Li, W., Li, Z., Xia, Y., & Ye, Q. (2010). Enhanced 1,3-propanediol production by supply of organic acids and repeated fed-batch culture. Industrial Microbiology and Biotechnology, 37(7), 681–687.CrossRefGoogle Scholar
  19. 19.
    Kaur, G., Srivastava, A. K., & Chand, S. (2012). Simple strategy of repeated batch cultivation for enhanced production of 1,3-Propanediol using Clostridium diolis. Applied Biochemistry and Biotechnology, 167(5), 1061–1068.CrossRefGoogle Scholar
  20. 20.
    Godoy, A., Amorim, H. V., Lopes, M. L., & Oliveira, A. J. (2008). Continuous and batch fermentation processes: advantages and disadvantages of these processes in the Brazilian ethanol production. International Sugar Journal, 110, 75–181.Google Scholar
  21. 21.
    Li, S. Y., Srivastava, R., Suib, S. L., Li, Y., & Parnas, R. S. (2011). Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control. Bioresource Technology, 102(5), 4241–4250.CrossRefGoogle Scholar
  22. 22.
    Hong, E. S., Yoon, S. Y., Kim, J. Y., Kim, E. M., Kim, D. S., Rhie, S. G., & Ryu, Y. W. (2013). Isolation of microorganisms able to produce 1,3-propanediol and optimization of medium constituents for Klebsiella pneumoniae AJ4. Bioprocess and Biosystems Engineering, 36(6), 835–843.CrossRefGoogle Scholar
  23. 23.
    Oh, B. R., Seo, J. W., Choi, M. H., & Kim, C. H. (2008). Optimization of culture conditions for 1,3-Propanediol production from crude glycerol by Klebsiella pneumonia using response surface methodology. Biotechnology and Bioprocess Engineering, 13(6), 666–670.CrossRefGoogle Scholar
  24. 24.
    Liu, B., Christiansen, K., Parnas, R., Xu, Z., & Li, B. (2013). Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol. International Journal of Hydrogen Energy, 38(8), 3196–3205.CrossRefGoogle Scholar
  25. 25.
    Zheng, Z. M., Hu, Q. L., Hao, J., Xu, F., Guo, N. N., Sun, Y., & Liu, D. H. (2008). Statistical optimization of culture conditions for 1,3-propanediol by Klebsiella pneumoniae AC 15 via central composite design. Bioresource Technology, 99(5), 1052–1056.CrossRefGoogle Scholar
  26. 26.
    Zhang, G., Ma, B., Xua, X., Li, C., & Wang, L. (2007). Fast conversion of glycerol to 1,3-propanediol by a new strain of Klebsiella pneumoniae. Biochemical Engineering Journal, 37(3), 256–260.CrossRefGoogle Scholar
  27. 27.
    Zhang, X., Li, Y., Zhuge, B., Tang, X., Shen, W., Rao, Z., Fang, H., & Zhuge, J. (2006). Construction of a novel recombinant Escherichia coli strain capable of producing 1,3–propanediol and optimization of fermentation parameters by statistical design. World Journal of Microbiology and Biotechnology, 22(9), 945–952.CrossRefGoogle Scholar
  28. 28.
    Rujananon, R., Prasertsan, P., & Phongdara, A. (2014). Biosynthesis of 1,3-propanediol from recombinant E. coli by optimization process using pure and crude glycerol as a sole carbon source under two-phase fermentation system. World Journal of Microbiology and Biotechnology, 30(4), 1359–1368.CrossRefGoogle Scholar
  29. 29.
    Sattayasamitsathit, S., Methacanon, P., & Prasertsan, P. (2011). Enhance1,3-Propanediol production from crude glycerol in batch and fed-batch fermentation with two-phase pH-controlled strategy. Electronic Journal of Biotechnology, 14(6).
  30. 30.
    Zhao, Z. F., Wen, C. F., Rong, G., Liu, R. Q., Xu, J. G., & Hu, Q. P. (2016). Isolation and identification of alkali-resistant 1,3-propanediol producing strain. Advances in Microbiology, 6(12), 917–926.CrossRefGoogle Scholar
  31. 31.
    Xiao, Y., Zhang, X., Zhu, M., & Tan, W. (2013). Effect of the culture media optimization, pH and temperature on the biohydrogen production and the hydrogenase activities by Klebsiella pneumoniae ECU-15. Bioresource Technology, 137, 9–17.CrossRefGoogle Scholar
  32. 32.
    Xiu, Z. L., Song, B. H., Wang, Z. T., Sun, L. H., Feng, E. M., & Zeng, A. P. (2004). Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures. Biochemical Engineering Journal., 19, 189–197.CrossRefGoogle Scholar
  33. 33.
    Mu, Y., Teng, H., Zhang, D. J., Wang, W., & Xiu, Z. L. (2006). Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnology Letters, 28(21), 1755–1759.CrossRefGoogle Scholar
  34. 34.
    Yang, X., Kim, D. S., Cho, H. S., Kim, C. K., Thapa, L. P., Park, C. H., & Kim, S. W. (2017). Repeated batch production of 1,3-propanediol from biodiesel derived waste glycerol by Klebsiella pneumoniae. Chemical Engineering Journal, 314, 660–669.CrossRefGoogle Scholar
  35. 35.
    Kim, S. H., Kim, S. J., Park, K. G., Rhee, S. L., & Kim, C. H. (2002). 1,3-Propandiol fermentation using the by-products from fat industry. Korean Journal of Biotechnology and Bioengineering, 17, 255–260.Google Scholar
  36. 36.
    Niladevi, K. N., Sukumaran, R. K., Jacob, N., Anisha, G. S., & Prema, P. (2009). Optimization of laccase production response surface methodology. Microbiological Research, 164(1), 105–113.CrossRefGoogle Scholar
  37. 37.
    Kajiura, H., Mori, K., Shibata, N., & Toraya, T. (2007). Molecular basis for specificities of reactivating factors for adenosylcobalamin-dependent diol and glycerol dehydratases. The FEBS Journal, 274(21), 5556–5566.CrossRefGoogle Scholar
  38. 38.
    Talarico, T. L., Axelsson, L. T., Novotny, J., Fiuzat, M., & Dobrogosz, W. J. (1990). Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol: NAD+ oxidoreductase. Applied and Environmental Microbiology, 56(4), 943–948.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Jalasutram, V., & Jetty, A. (2011). Optimization of 1,3-propanediol production by Klebsiella pneumoniae 141B using Taguchi methodology: improvement in production by co fermentation studies. Research in Biotechnology, 2, 90–104.Google Scholar
  40. 40.
    Moon, C., Lee, C. H., Sang, B. I., & Um, Y. S. (2011). Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridiu pasteurianum. Bioresource Technology, 102(22), 10561–10568.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemical EngineeringGangneung-Wonju National UniversityGangneungRepublic of Korea

Personalised recommendations