Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 3, pp 750–763 | Cite as

Xanthan Gum Production by Xanthomonas campestris pv. campestris IBSBF 1866 and 1867 from Lignocellulosic Agroindustrial Wastes

  • Juliana Albuquerque da Silva
  • Lucas Guimarães Cardoso
  • Denilson de Jesus Assis
  • Gleice Valéria Pacheco Gomes
  • Maria Beatriz Prior Pinto Oliveira
  • Carolina Oliveira de Souza
  • Janice Izabel Druzian
Article
  • 182 Downloads

Abstract

This study aimed to evaluate the properties of xanthan gum produced by Xanthomonas campestris pv. campestris 1866 and 1867 from lignocellulosic agroindustrial wastes. XG was produced using an orbital shaker in a culture medium containing coconut shell (CS), cocoa husks (CH), or sucrose (S) minimally supplemented with urea and potassium. The XG production results varied between the CS, CH, and S means, and it was higher with the CH in strains 1866 (4.48 g L−1) and 1867 (3.89 g L−1). However, there was more apparent viscosity in the S gum (181.88 mPas) and the CS gum (112.06 mPas) for both 1866 and 1867, respectively. The ability of XGCS and XGCH to emulsify different vegetable oils was similar to the ability of XGS. All gums exhibited good thermal stability and marked groups in the elucidation of compounds and particles with rough surfaces.

Keywords

Agroindustrial wastes Lignocellulosic Xanthomonas campestris and xanthan gum (XG) 

Notes

Funding Information

We would like to thank the funding agencies CAPES, FAPESP, and the CNPq project PVE 400710/2014-5 for financial support and the Graduate Programs in Chemical Engineering and Food Sciences of the Federal University of Bahia.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Niknezhad, S. V., Mohammad, A. A., Zamani, A., & Biria, D. (2016). Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii. International Journal of Biological Macromolecules, 82, 751–756.CrossRefGoogle Scholar
  2. 2.
    Rosalam, S., & England, R. (2006). Review of xanthan gum production from unmodified starches by Xanthomonas campestris sp. Enzyme and Microbial Technology, 39(2), 197–207.CrossRefGoogle Scholar
  3. 3.
    Barua, R., Alam, M. J., Salim, M., & Ashrafee, T. S. (2016). Smalls acle production and characterization of xanthan gum synthesized by local isolates of Xanthomonas campestris. Journal of Experimental Biology, 54, 151–155.Google Scholar
  4. 4.
    Jin, C. Q., & Park, S. M. (2001). The fractal behavior of polyaniline-dodecylbenzenesulfonate salt and polyaniline-chlorophyll studied by small-angle X-ray scattering. Synthetic Metals, 124(2-3), 443–447.CrossRefGoogle Scholar
  5. 5.
    Badwaik, H. R., Sakure, K., Alexander, A., Ajazuddin, Dhongade, H., & Tripathi, D. K. (2016). Synthesis and caracterisation of poly(acryalamide) grafted carboxymethyl xanthan gum copolymer. International Journal of Biological Macromolecules, 85, 361–369.CrossRefGoogle Scholar
  6. 6.
    García-Ochoa, F., Gómez, E. C., & Santos, V. E. (2000). Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbiology Technology, 27(9), 680–690.CrossRefGoogle Scholar
  7. 7.
    Lopes, B. M., Lessa, V. L., Silva, B. M., Carvalho Filho, M. A. S., Schnitzler, E., & Lacerda, L. G. (2015). Xanthan gum: properties, production conditions, quality and economic perspective. Journal of Food Nutrition Research, 54, 185–194.Google Scholar
  8. 8.
    Desplanques, S., Renou, F., Grisel, M., & Malhiac, C. (2012). Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocolloids, 27(2), 401–410.CrossRefGoogle Scholar
  9. 9.
    Ross-Murphy, S. B., Shatwell, K. P., Sutherland, I. W., & Dea, I. C. M. (1996). Influence of acyl substituents on the interaction of xanthans with plant polysaccharides. Food Hydrocolloids, 10(1), 117–122.CrossRefGoogle Scholar
  10. 10.
    Hayati, I. N., Ching, C. W., & Rozaini, M. Z. H. (2016). Flow properties of o/w emulsions as affected by xanthan gum, guar gum and carboxymethyl cellulose interactions studied by a mixture regression modelling. Food Hydrocolloids, 53, 199–208.CrossRefGoogle Scholar
  11. 11.
    Wang, Z., Wu, J., Zhu, L., & Zhan, X. (2017). Characterization of xanthan gum produced from glycerol by a mutant strain Xanthomonas campestris CCTCC M2015714. Carbohydrate Polymers, 157, 521–526.CrossRefGoogle Scholar
  12. 12.
    Luvielmo, M., & Scamparini, A. (2009). Xanthan gum: production, recovery, properties and application. Estudos Tecnológicos, 5(1), 50–67.CrossRefGoogle Scholar
  13. 13.
    Assis, D. J., Brandão, L. V., Costa, L. A. S., Figueiredo, T. V. B., Sousa, L. S., Padilha, F. F., & Druzian, J. I. (2014). A study of the effects of aeration and agitation on the properties and production of xanthan gum from crude glycerin derived from biodiesel using the response surface methodology. Applied Biochemistry and Biotechnology, 172(13), 2769–2785.CrossRefGoogle Scholar
  14. 14.
    Diniz, D. M., Druzian, J. I., & Audibert, S. (2012). Production of xanthan gum by Xanthomonas campestris strains native from bark cocoa or whey. Polímeros: Ciência e Tecnologia, 22(3), 278–281.CrossRefGoogle Scholar
  15. 15.
    Assis, D. J., Gomes, G. V. P., Pascoal, D. R. C., Pinho, L. S., Chaves, L. B. O., & Druzian, J. I. (2016). Simultaneous biosynthesis of polyhydroxyalkanoates and extracellular polymeric substance (eps) from crude glycerol from biodiesel production by different bacterial strains. Applied Biochemistry and Biotechnology, 180(6), 1110–1127.CrossRefGoogle Scholar
  16. 16.
    Wang, Z., Wu, J., Zhu, L., & Zhan, X. (2016). Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol. Bioresource Technology, 211, 390–397.CrossRefGoogle Scholar
  17. 17.
    Wang, Z., Wu, J., Gao, M., Zhu, L., & Zhan, X. (2017). High production of xanthan gum by a glycerol-tolerant strain Xanthomonas campestris WXLB-006. Biochemistry & Biotechnology., 47, 468–472.Google Scholar
  18. 18.
    Assis, D. J., Costa, L. A. S., Campos, M. I., de Souza, C. O., Druzian, J. I., Nunes, I. L., & Padilha, F. F. (2014). Influence of the nature agro-industrial waste fermented by Xanthomonas axonopodis pv. manihotis the porperties of xanthan gums resulting. Polímeros: Ciência e Tecnologia, 24(2), 176–183.CrossRefGoogle Scholar
  19. 19.
    Costa, L. A. S., Campos, M. I., Druzian, J. I., de Oliveira, A. M., & de Oliveira Jr., E. N. (2014). Biosynthesis of xanthan gum from fermenting shrimp shell: yield and apparent viscosity. International Journal of Polymer Science, 2014, 8.Google Scholar
  20. 20.
    Brandão, L. V., Esperidião, M. C. A., & Druzian, J. I. (2010). Use of the cassava serum as fermentative substrate in xanthan gum biosynthesis: apparent viscosity and production. Food Science and Technology, 20, 1–6.Google Scholar
  21. 21.
    Moosavi-nasab, M., Shekaripour, F., & Alipoor, M. (2009). Use of date syrup as agricultural waste for xanthan production by Xanthomonas campestris. Agricultural Research, 27, 89–98.Google Scholar
  22. 22.
    Brandão, L. V., Nery, T. B. R., Machado, B. A. S., Esperidião, M. C. A., & Druzian, J. I. (2008). Production of xanthan gum obtained from sugarcane. Food Science and Technology, 28, 217–222.CrossRefGoogle Scholar
  23. 23.
    Kalogiannis, S., Lakovidou, G., Liakopoulou-Kyriakides, M., Kyriakidis, D. A., & Skaracis, G. N. (2003). Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochemistry, 39(2), 249–256.CrossRefGoogle Scholar
  24. 24.
    Horwitz, W. (2000). Official methods of analysis of AOAC international (17 th ed.). Gaithersburg, Maryland: Association of official analytical chemists international.Google Scholar
  25. 25.
    Bligh, E. G., & Dyer, W. J. J. (1959). A rapid method of total lipid extraction and purification. Journal of Biochemistry and Physiology, 37, 911–917.Google Scholar
  26. 26.
    Lane, J. H., & Eynon, L. (1934). Determination of reducing sugars by Fehling’s solution with methylene blue indicator. London: Normam Rodge.Google Scholar
  27. 27.
    Chhabra, R. P., & Richardson, J. F. (1999). Non-Newtonian flow in the process industries fundamentals and engineering applications. Oxford: Butterworth-Heinemann.Google Scholar
  28. 28.
    Gomes, G. V. P., Assis, D. J., da Silva, J. B. A., Santos-Ebinuma, V. C., Costa, L. A. S., & Druzian, J. I. (2015). Obtaining xanthan gum impregnated with cellulose microfibrils derived from sugarcane bagasse. Materials Today: Proceedings, 2(1), 389–398.CrossRefGoogle Scholar
  29. 29.
    Iyer, A., Mody, K., & Jha, B. (2006). Emulsifying properties of a marine bacterial, exopolysaccharide. Enzyme and Microbial Technology, 38(1-2), 220–222.CrossRefGoogle Scholar
  30. 30.
    Maia, A. M. S., Silva, H. V. M., Curti, P. S., & Balaban, R. C. (2012). Study of the reaction of grafting acrylamide onto xanthan gum. Carbohydrate Polymers, 90(2), 778–783.CrossRefGoogle Scholar
  31. 31.
    Ahuja, M., Kumar, A., & Drug, K. S. (2012). Synthesis, characterization and in vitro release behavior of carboxymethyl xanthan. International Journal of Biological Macromolecules, 51(5), 1086–1090.CrossRefGoogle Scholar
  32. 32.
    Nery, T. B. R., Brandão, L. V., Esperidião, M. C. A., & Druzian, J. I. (2008). Biosynthesis of xanthan gum from the fermentation of milk whey: productivity and viscosity. Química Nova, 39, 1937–1941.CrossRefGoogle Scholar
  33. 33.
    Nery, T. B. R., Cruz, A. J. D., & Druzian, J. I. (2013). Use of green coconut shells as an alternative substrate for the production of xanthan gum on different scales of fermentation. Polímeros, 23(5), 602–607.CrossRefGoogle Scholar
  34. 34.
    Van Sluys, M. A., Monteiro-Vitorello, C. B., Camargo, L. E. A., Menck, C. F. M., da Silva, A. C. R., Ferro, J. Á., Oliveira, M. C., Setubal, J. C., Kitajima, J. P., & Simpson, A. J. (2002). Comparative genomic analysis of plant-associated bacteria. Annual Review of Phytopathology, 40, 169–189.CrossRefGoogle Scholar
  35. 35.
    Rosseto, F. R., Manzine, L. R., Neto, N. O., & Polikarpov, I. (2016). Biophysical and biochemical studies of a major endoglucanase secreted by Xanthomonas campestris pv. campestris. Enzyme and Microbial Technology, 91, 1–7.CrossRefGoogle Scholar
  36. 36.
    Nitschke, M., Rodrigues, V., & Schinatto, L. F. (2001). Formulation of whey-based media for xanthan gum production by X. campestris C7L isolate. Food Science and Technology, 21(1), 82–85.CrossRefGoogle Scholar
  37. 37.
    Casas, J. A., Santos, V. E., & García-Ochoa, F. (2000). Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzyme and Microbial Technology, 26(2-4), 282–291.CrossRefGoogle Scholar
  38. 38.
    Garcia-Ochoa, F., Santos, V. E., Casas, J. A., & Gomez, E. (2000). Xanthan gum: production, recovery, and properties. Biotechnology Advanced, 18(7), 549–579.CrossRefGoogle Scholar
  39. 39.
    Flores-Candia, J. L., & Decker, W. D. (1999). Effect of the nitrogen source on pyruvate content and rheological properties of xanthan. Biotechnology Progress, 15, 531–538.CrossRefGoogle Scholar
  40. 40.
    Hassler, R. A., & Doherty, D. H. (1990). Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris. Biotechnology Progress, 6(3), 182–187.CrossRefGoogle Scholar
  41. 41.
    Druzian, J. I., & pagliarini, A. P. (2007). Xanthan gum production by fermentation from residue of apple juice. Food Science and Technology, 27(1), 26–31.CrossRefGoogle Scholar
  42. 42.
    Niknezhad, S. V., Mohammad, A. A., Zamani, A., Biria, D., & Doostmohammadi, M. (2015). Optimization of xanthan gum production using cheese whey and response surface methodology. International Journal of Biological Macromolecules, 2, 453–460.Google Scholar
  43. 43.
    Gilani, S. L., Najafpour, G. D., Heydarzadeh, H. D., & Zare, H. (2011). Kinetic models for xanthan gum production using Xanthomonas campestris from molasses. Chemical Industry & Chemical Engineering Quarterly, 17(2), 179–187.CrossRefGoogle Scholar
  44. 44.
    McClements, D. J. (1999). Food emulsions: principles, practice and techniques. Boca Raton: CRC Press.Google Scholar
  45. 45.
    Faria, S., Petkowicz, C. L. O., Moraes, S. L., Terrone, M. G. H., Resende, M. M., França, F. P., & Cardoso, V. L. (2011). Characterization of xanthan gum produced from sugar cane broth. Carbohydrate Polymers, 86(2), 469–476.CrossRefGoogle Scholar
  46. 46.
    Zohuriaan, M. J., & Shokrolahi, F. (2004). Thermal studies on natural and modified gums. Polymer Testing, 23(5), 575–579.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Juliana Albuquerque da Silva
    • 1
  • Lucas Guimarães Cardoso
    • 2
  • Denilson de Jesus Assis
    • 1
  • Gleice Valéria Pacheco Gomes
    • 3
  • Maria Beatriz Prior Pinto Oliveira
    • 4
  • Carolina Oliveira de Souza
    • 2
  • Janice Izabel Druzian
    • 1
    • 2
  1. 1.Department of Chemical EngineeringFederal University of BahiaSalvadorBrazil
  2. 2.Faculty of PharmacyFederal University of BahiaSalvadorBrazil
  3. 3.Federal Institute of EducationScience and Technology BaianoSenhor do BonfimBrazil
  4. 4.Department of Chemical Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal

Personalised recommendations