Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 2, pp 493–505 | Cite as

Rapid and Sensitive Detection of Staphylococcal Enterotoxin B by Recombinant Nanobody Using Phage Display Technology

  • Saeed Zanganeh
  • Hamideh Rouhani NejadEmail author
  • Jalil Fallah Mehrabadi
  • Razieh Hosseini
  • Bahareh Shahi
  • Zahra Tavassoli
  • Asieh Aramvash
Article

Abstract

Staphylococcal enterotoxin B, from Staphylococcus aureus (S. aureus), is one of the most potent bacterial superantigens with profound toxic effects on the immune system. It is associated with food poisoning, toxic shock, atopic dermatitis, asthma, and nasal polyps in humans. The current diagnostic methods for staphylococcal enterotoxin are mainly based on traditional monoclonal antibodies which hardly meet the requirements for clinical applications, and hybridoma clones lose their ability to secrete antibodies during time. The present study investigates the development of a novel, highly specific, low-cost, and sensitive nanobody capable of being used in immunoassays for Staphylococcal enterotoxin B (SEB) detection in suspicious foods. For this purpose, Camelus dromedarius was immunized against SEB toxin. After obtaining acceptable titration, a high-quality phage display nanobody library (4 × 1010 PFU/ml) was constructed. High-affinity SEB-specific nanobodies were retrieved from constructed libraries. After phage rescue and five round of biopanning, clone screening was performed by phage ELISA. Recombinant nanobodies which were expressed from C7 and C21 clone showed the highest affinity for SEB. The presence of high quality and pure nanobody band at ~ 15 kDa was confirmed by SDS-PAGE and western blotting. The affinity constant which was measured by ELISA was calculated to be around 10−9 M. The results suggest that the proposed detection method by nanobodies is an alternative diagnostic tool enabling a rapid, inexpensive, and specific detection of the SEB.

Keywords

Camel Nanobody Single-domain antibody Phage display VHH Staphylococcal enterotoxin B 

Abbreviations

VHH

Camelid heavy chain antibody

ELISA

Enzyme-linked immunoabsorbent immunoassay

HCAbs

Heavy chain antibodies

SEB

Staphylococcal enterotoxin B

SDS-PAGE

Sodium dodecyl sulfate polyacryl amide gel electrophoresis

Notes

Acknowledgements

The authors would like to thank the research council of Malek-Ashtar University of Technology for the financial support of this investigation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Argudín, M. Á., Mendoza, M. C., & Rodicio, M. R. (2010). Food poisoning and Staphylococcus aureus enterotoxins. Toxins, 2(7), 1751–1773.CrossRefGoogle Scholar
  2. 2.
    Hennekinne, J.-A., Ostyn, A., Guillier, F., Herbin, S., Prufer, A.-L., & Dragacci, S. (2010). How should staphylococcal food poisoning outbreaks be characterized? Toxins, 2(8), 2106–2116.CrossRefGoogle Scholar
  3. 3.
    Pinchuk, I. V., Beswick, E. J., & Reyes, V. E. (2010). Staphylococcal enterotoxins. Toxins, 2(8), 2177–2197.CrossRefGoogle Scholar
  4. 4.
    Hennekinne, J.-A., Brun, V., De Buyser, M.-L., Dupuis, A., Ostyn, A., & Dragacci, S. (2009). Innovative application of mass spectrometry for the characterization of staphylococcal enterotoxins involved in food poisoning outbreaks. Applied and Environmental Microbiology, 75(3), 882–884.CrossRefGoogle Scholar
  5. 5.
    Koluman, A., Unlu, T., Dikici, A., Tezel, A., Akcelik, E. N., & Burkan, Z. T. (2011). Presence of Staphylococcus aureus and staphylococcal enterotoxins in different foods. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 17(Suppl A), 55–60.Google Scholar
  6. 6.
    Ahanotu, E., Alvelo-Ceron, D., Ravita, T., & Gaunt, E. (2006). Staphylococcal enterotoxin B as a biological weapon: Recognition, management, and surveillance of staphylococcal enterotoxin. Applied Biosafety, 11(3), 120–126.CrossRefGoogle Scholar
  7. 7.
    Vasconcelos, N. G., & Ribeiro de Souza da Cunha, M. L. (2010). Staphylococcal enterotoxins: molecular aspects and detection methods. Journal of Public Health and Epidemiology, 2(3), 29–42.Google Scholar
  8. 8.
    Bianchi, D., Gallina, S., Bellio, A., Chiesa, F., Civera, T., & Decastelli, L. (2014). Enterotoxin gene profiles of Staphylococcus aureus isolated from milk and dairy products in Italy. Letters in Applied Microbiology, 58(2), 190–196.CrossRefGoogle Scholar
  9. 9.
    Hennekinne, J.-A., De Buyser, M.-L., & Dragacci, S. (2012). Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiology Reviews, 36(4), 815–836.CrossRefGoogle Scholar
  10. 10.
    Wu, S., Duan, N., Gu, H., Hao, L., Ye, H., Gong, W., & Wang, Z. (2016). A review of the methods for detection of Staphylococcus aureus enterotoxins. Toxins, 8(7), 176.CrossRefGoogle Scholar
  11. 11.
    Liu, J. L., Goldman, E. R., Zabetakis, D., Walper, S. A., Turner, K. B., Shriver-Lake, L. C., & Anderson, G. P. (2015). Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond. Microbial Cell Factories, 9(14), 158.CrossRefGoogle Scholar
  12. 12.
    Smolarek, D., Bertrand, O., & Czerwinski, M. (2012). Variable fragments of heavy chain antibodies (VHHs): a new magic bullet molecule of medicine? Postȩpy higieny i medycyny doświadczalnej (Online), 14(66), 348–358.CrossRefGoogle Scholar
  13. 13.
    Swain, M. D., Anderson, G. P., Zabetakis, D., Bernstein, R. D., Liu, J. L., Sherwood, L. J., Hayhurst, A., & Goldman, E. R. (2010). Llama-derived single-domain antibodies for the detection of botulinum a neurotoxin. Analytical and Bioanalytical Chemistry, 398(1), 339–348.CrossRefGoogle Scholar
  14. 14.
    Saerens, D., Ghassabeh, G. H., & Muyldermans, S. (2008). Single-domain antibodies as building blocks for novel therapeutics. Current Opinion in Pharmacology, 8(5), 600–608.CrossRefGoogle Scholar
  15. 15.
    McGonigal, K., Tanha, J., Palazov, E., Li, S., Gueorguieva-Owens, D., & Pandey, S. (2009). Isolation and functional characterization of single domain antibody modulators of Caspase-3 and apoptosis. Applied Biochemistry and Biotechnology, 157(2), 226–236.CrossRefGoogle Scholar
  16. 16.
    Ebrahimizadeh, W., Mousavi Gargari, S. L., Javidan, Z., & Rajabibazl, M. (2015). Production of novel VHH Nanobody inhibiting angiogenesis by targeting binding site of VEGF. Applied Biochemistry and Biotechnology, 176(7), 1985–1995.CrossRefGoogle Scholar
  17. 17.
    Conrath, K. E., Lauwereys, M., Galleni, M., Matagne, A., Frere, J. M., Kinne, J., Wyns, L., & Muyldermans, S. (2001). Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrobial Agents and Chemotherapy, 45(10), 2807–2812.CrossRefGoogle Scholar
  18. 18.
    Bakhtiari, S. H., Rahbarizadeh, F., Hasannia, S., Ahmadvand, D., Iri-Sofla, F. J., & Rasaee, M. J. (2009). Anti-MUC1 nanobody can redirect T-body cytotoxic effector function. Hybridoma (Larchmt), 28(2), 85–92.CrossRefGoogle Scholar
  19. 19.
    Hoseinpoor, R., Mousavi Gargari, S. L., Rasooli, I., Rajabibazl, M., & Shahi, B. (2014). Functional mutations in and characterization of VHH against helicobacter pylori urease. Applied Biochemistry and Biotechnology, 172(6), 3079–3091.CrossRefGoogle Scholar
  20. 20.
    Ebrahimizadeh, W., Gargari, S. M., Rajabibazl, M., Ardekani, L. S., Zare, H., & Bakherad, H. (2013). Isolation and characterization of protective anti-LPS nanobody against V. Cholerae O1 recognizing Inaba and Ogawa serotypes. Applied Microbiology and Biotechnology, 97(10), 4457–4466.CrossRefGoogle Scholar
  21. 21.
    Singh, P. K., Agrawal, R., Kamboj, D. V., Gupta, G., Boopathi, M., Goel, A. K., & Singh, L. (2010). Construction of a single-chain variable-fragment antibody against the superantigen staphylococcal enterotoxin B. Applied and Environmental Microbiology, 76(24), 8184–8191.CrossRefGoogle Scholar
  22. 22.
    Beatty, J. D., Beatty, B. G., & Vlahos, W. G. (1987). Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. Journal of Immunological Methods, 100(1), 173–179.CrossRefGoogle Scholar
  23. 23.
    Bradford, M. (1976). A Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.CrossRefGoogle Scholar
  24. 24.
    Urushibata, Y., Itoh, K., Ohshima, M., & Seto, Y. (2010). Generation of fab fragment-like molecular recognition proteins against staphylococcal enterotoxin B by phage display technology. Clinical and Vaccine Immunology, 17(11), 1708–1717.CrossRefGoogle Scholar
  25. 25.
    Acharya, S., Shukla, S., Mahajan, S., & Diwan, S. (2011). The charisma of “magic bullets”–monoclonal antibodies (mAB/moAB) in clinical medicine. Journal of the Indian Academy of Clinical Medicine, 12(4), 283–289.Google Scholar
  26. 26.
    Zhu, K., Dietrich, R., Didier, A., Doyscher, D., & Märtlbauer, E. (2014). Recent developments in antibody-based assays for the detection of bacterial toxins. Toxins, 6(4), 1325–1348.CrossRefGoogle Scholar
  27. 27.
    Dübel, S., & Reichert, J. M. (2014). Handbook of therapeutic antibodies. Weinheim: John Wiley & Sons.Google Scholar
  28. 28.
    Rahbarizadeh, F., Ahmadvand, D., & Sharifzadeh, Z. (2011). Nanobody; an old concept and new vehicle for immunotargeting. Immunological Investigations, 40(3), 299–338.CrossRefGoogle Scholar
  29. 29.
    Bernedo-Navarro, R. A., & Yano, T. (2016). Phage display and Shiga toxin neutralizers. Toxicon, 113, 60–69.CrossRefGoogle Scholar
  30. 30.
    Petrenko, V. A., & Vodyanoy, V. J. (2003). Phage display for detection of biological threat agents. Journal of microbiological methods, 53(2), 253–262.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Saeed Zanganeh
    • 1
  • Hamideh Rouhani Nejad
    • 2
    Email author
  • Jalil Fallah Mehrabadi
    • 3
  • Razieh Hosseini
    • 2
  • Bahareh Shahi
    • 2
  • Zahra Tavassoli
    • 2
  • Asieh Aramvash
    • 2
  1. 1.Biotechnology Research CenterPasteur Institute of IranTehranIran
  2. 2.Malek-Ashtar University of TechnologyTehranIran
  3. 3.The Lister Laboratory of MicrobiologyTehranIran

Personalised recommendations