Applied Biochemistry and Biotechnology

, Volume 186, Issue 3, pp 563–575 | Cite as

Highly Efficient Deracemization of Racemic 2-Hydroxy Acids in a Three-Enzyme Co-Expression System Using a Novel Ketoacid Reductase

  • Ya-Ping Xue
  • Chuang Wang
  • Di-Chen Wang
  • Zhi-Qiang Liu
  • Yu-Guo ZhengEmail author


Enantiopure 2-hydroxy acids (2-HAs) are important intermediates for the synthesis of pharmaceuticals and fine chemicals. Deracemization of racemic 2-HAs into the corresponding single enantiomers represents an economical and highly efficient approach for synthesizing chiral 2-HAs in industry. In this work, a novel ketoacid reductase from Leuconostoc lactis (LlKAR) with higher activity and substrate tolerance towards aromatic α-ketoacids was discovered by genome mining, and then its enzymatic properties were characterized. Accordingly, an engineered Escherichia coli (HADH-LlKAR-GDH) co-expressing 2-hydroxyacid dehydrogenase, LlKAR, and glucose dehydrogenase was constructed for efficient deracemization of racemic 2-HAs. Most of the racemic 2-HAs were deracemized to their (R)-isomers at high yields and enantiomeric purity. In the case of racemic 2-chloromandelic acid, as much as 300 mM of substrate was completely transformed into the optically pure (R)-2-chloromandelic acid (> 99% enantiomeric excess) with a high productivity of 83.8 g L−1 day−1 without addition of exogenous cofactor, which make this novel whole-cell biocatalyst more promising and competitive in practical application.


Biocatalysis 2-Hydroxy acid Deracemization Ketoacid reductase Co-expression (R)-2-Chloromandelic acid 


Funding Information

This work was funded by the National Natural Science Foundation of China (No. 21676254).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

Ethical Statement

The authors declare that there are no studies conducted with human participants or animals.

Supplementary material

12010_2018_2760_MOESM1_ESM.docx (3.1 mb)
ESM 1 (DOCX 3165 kb)


  1. 1.
    Groger, H. (2001). Enzymatic routes to enantiomerically pure aromatic α-hydroxy carboxylic acids: a further example for the diversity of biocatalysis. Advanced Synthesis & Catalysis, 343(6–7), 547–558.CrossRefGoogle Scholar
  2. 2.
    Ma, B. D., Yu, H. L., Pan, J., Liu, J. Y., Ju, X., & Xu, J. H. (2013). A thermostable and organic-solvent tolerant esterase from Pseudomonas putida ECU1011: catalytic properties and performance in kinetic resolution of α-hydroxy acids. Bioresource Technology, 133(2013), 354–360.CrossRefGoogle Scholar
  3. 3.
    Chen, X., Wu, Q., & Zhu, D. (2015). Enzymatic synthesis of chiral 2-hydroxy carboxylic acids. Process Biochemistry, 50(5), 759–770.CrossRefGoogle Scholar
  4. 4.
    Sheng, B. B., Xu, J., Ge, Y. S., Zhang, S., Wang, D. Q., Gao, C., Ma, C. Q., & Xu, P. (2016). Enzymatic resolution by a D-lactate oxidase catalyzed reaction for (S)-2-hydroxycarboxylic acids. ChemCatChem, 8(16), 2630–2633.CrossRefGoogle Scholar
  5. 5.
    Zhang, Z. J., Pan, J., Ma, B. D., & Xu, J. H. (2016). Efficient biocatalytic synthesis of chiral chemicals. Advances in Biochemical Engineering/Biotechnology, 155, 55–106.CrossRefGoogle Scholar
  6. 6.
    Zhang, C. S., Zhang, Z. J., Li, C. X., Yu, H. L., Zheng, G. W., & Xu, J. H. (2012). Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Applied Microbiology and Biotechnology, 95(1), 91–99.CrossRefGoogle Scholar
  7. 7.
    Wang, H., Sun, H., Gao, W., & Wei, D. (2014). Efficient production of (R)-o-chloromandelic acid by recombinant Escherichia coli cells harboring nitrilase from Burkholderia cenocepacia J2315. Organic Process Research & Development, 18(6), 767–773.CrossRefGoogle Scholar
  8. 8.
    Hu, Y., Wu, C., Wu, X. Y., Li, S. L., Sun, X. X., & Tang, Z. B. (2015). Efficient preparation of (R)-2-chloromandelic acid via a recycle process of resolution. Chirality, 27(3), 281–285.CrossRefGoogle Scholar
  9. 9.
    Bai, Y., & Yang, S. T. (2005). Biotransformation of R-2-hydroxy-4-phenylbutyric acid by D-lactate dehydrogenase and Candida boidinii cells containing formate dehydrogenase coimmobilized in a fibrous bed bioreactor. Biotechnology and Bioengineering, 92(2), 137–146.CrossRefGoogle Scholar
  10. 10.
    Sheng, B. B., Zheng, Z. J., Lv, M., Zhang, H. W., Qin, T., Gao, C., Ma, C. Q., & Xu, P. (2014). Efficient production of (R)-2-hydroxy-4-phenylbutyric acid by using a coupled reconstructed D-lactate dehydrogenase and formate dehydrogenase system. PLoS One, 9(8), e104204.CrossRefGoogle Scholar
  11. 11.
    Xue, Y. P., Cao, C. H., & Zheng, Y. G. (2018). Enzymatic asymmetric synthesis of chiral amino acids. Chemical Society Reviews, 47(4), 1516–1561.CrossRefGoogle Scholar
  12. 12.
    Dewanti, A. R., Xu, Y., & Mitra, B. (2004). Role of glycine 81 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate specificity and oxidase activity. Biochemistry, 43(33), 10692–10700.CrossRefGoogle Scholar
  13. 13.
    Ma, B. D., Kong, X. D., Yu, H. L., Zhang, Z. J., Dou, S., Xu, Y. P., Ni, Y., & Xu, J. H. (2014). Increased catalyst productivity in α-hydroxy acids resolution by esterase mutation and substrate modification. ACS Catalysis, 4(3), 1026–1031.CrossRefGoogle Scholar
  14. 14.
    Xue, Y. P., Shi, C. C., Xu, Z., Jiao, B., Liu, Z. Q., Huang, J. F., Zheng, Y. G., & Shen, Y. C. (2015). Design of nitrilases with superior activity and enantioselectivity towards sterically hindered nitrile by protein engineering. Advanced Synthesis & Catalysis, 357(8), 1741–1750.CrossRefGoogle Scholar
  15. 15.
    Norihiro, K., Hiroaki, Y. & C, D (2004). Alpha-keto acid reductase, method for producing the same, and method for producing optically active alpha-hydroxy acids using the same. US Patent Application, 2004086993 A1.Google Scholar
  16. 16.
    Tsuchiya, S., Miyamoto, K., & Ohta, H. (1992). Highly efficient conversion of (±)-mandelic acid to its (R)-(−)-enantiomer by combination of enzyme-mediated oxidation and reduction. Biotechnology Letters, 14(12), 1137–1142.CrossRefGoogle Scholar
  17. 17.
    Adam, W., Lazarus, M., Saha-Moller, C. R., & Schreier, P. (1998). Quantitative transformation of racemic 2-hydroxy acids into (R)-2-hydroxy acids by enantioselective oxidation with glycolate oxidase and subsequent reduction of 2-keto acids with D-lactate dehydrogenase. Tetrahedron: Asymmetry, 9(2), 351–355.CrossRefGoogle Scholar
  18. 18.
    Schrittwieser, J. H., Sattler, J., Resch, V., Mutti, F. G., & Kroutil, W. (2011). Recent biocatalytic oxidation-reduction cascades. Current Opinion in Chemical Biology, 15(2), 249–256.CrossRefGoogle Scholar
  19. 19.
    Schrittwieser, J. H., Velikogne, S., Hall, M., & Kroutil, W. (2017). Artificial biocatalytic linear cascades for preparation of organic molecules. Chemical Reviews, 118(1), 270–348.CrossRefGoogle Scholar
  20. 20.
    Xue, Y. P., Zeng, H., Jin, X. L., Liu, Z. Q., & Zheng, Y. G. (2016). Enantioselective cascade biocatalysis for deracemization of 2-hydroxy acids using a three-enzyme system. Microbial Cell Factories, 15(1), 162.CrossRefGoogle Scholar
  21. 21.
    Lopez-Gallego, F., & Schmidt-Dannert, C. (2010). Multi-enzymatic synthesis. Current Opinion in Chemical Biology, 14(2), 174–183.CrossRefGoogle Scholar
  22. 22.
    Xue, R., & Woodley, J. M. (2012). Process technology for multi-enzymatic reaction systems. Bioresource Technology, 115(2012), 183–195.CrossRefGoogle Scholar
  23. 23.
    Bayer, T., Milker, S., Wiesinger, T., Rudroff, F., & Mihovilovic, M. D. (2015). Designer microorganisms for optimized redox cascade reactions—challenges and future perspectives. Advanced Synthesis & Catalysis, 357(8), 1587–1618.CrossRefGoogle Scholar
  24. 24.
    Liu, Y., Xu, G., Han, R., Dong, J., & Ni, Y. (2017). Identification of D-carbamoylase for biocatalytic cascade synthesis of D-tryptophan featuring high enantioselectivity. Bioresource Technology, 249(2018), 720–728.PubMedGoogle Scholar
  25. 25.
    France, S. P., Hepworth, L. J., Turner, N. J., & Flitsch, S. L. (2016). Constructing biocatalytic cascades: in vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catalysis, 7(1), 710–724.CrossRefGoogle Scholar
  26. 26.
    Ema, T., Yagasaki, H., Okita, N., Takeda, M., & Sakai, T. (2006). Asymmetric reduction of ketones using recombinant E. coli cells that produce a versatile carbonyl reductase with high enantioselectivity and broad substrate specificity. Tetrahedron, 62(26), 6143–6149.CrossRefGoogle Scholar
  27. 27.
    Hu, X., Liu, L., Chen, D., Wang, Y., Zhang, J., & Shao, L. (2017). Co-expression of the recombined alcohol dehydrogenase and glucose dehydrogenase and cross-linked enzyme aggregates stabilization. Bioresource Technology, 224(2017), 531–535.CrossRefGoogle Scholar
  28. 28.
    Jiang, W., & Fang, B. (2016). Construction of a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates. Scientific Reports, 6(1), 30462.CrossRefGoogle Scholar
  29. 29.
    Wei, P., Gao, J. X., Zheng, G. W., Wu, H., Zong, M. H., & Lou, W. Y. (2016). Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols. Journal of Biotechnology, 230(2016), 54–62.CrossRefGoogle Scholar
  30. 30.
    Xue, Y. P., Zheng, Y. G., Zhang, Y. Q., Sun, J. L., Liu, Z. Q., & Shen, Y. C. (2013). One-pot, single-step deracemization of 2-hydroxyacids by tandem biocatalytic oxidation and reduction. Chemical Communications, 49(91), 10706–10708.CrossRefGoogle Scholar
  31. 31.
    Kara, S., Schrittwieser, J. H., Hollmann, F., & Ansorge-Schumacher, M. B. (2014). Recent trends and novel concepts in cofactor-dependent biotransformations. Applied Microbiology and Biotechnology, 98(4), 1517–1529.CrossRefGoogle Scholar
  32. 32.
    Shen, N. D., Ni, Y., Ma, H. M., Wang, L. J., Li, C. X., Zheng, G. W., Zhang, J., & Xu, J. H. (2012). Efficient synthesis of a chiral precursor for angiotensin-converting enzyme (ACE) inhibitors in high space-time yield by a new reductase without external cofactors. Organic Letters, 14(8), 1982–1985.CrossRefGoogle Scholar
  33. 33.
    Xu, G. C., Zhang, L. L., & Ni, Y. (2016). Enzymatic preparation of D-phenyllactic acid at high space-time yield with a novel phenylpyruvate reductase identified from Lactobacillus sp. CGMCC 9967. Journal of Biotechnology, 222(2016), 29–37.CrossRefGoogle Scholar
  34. 34.
    Xu, Z., Cai, T., Xiong, N., Zou, S. P., Xue, Y. P., & Zheng, Y. G. (2018). Engineering the residues on “A” surface and C-terminal region to improve thermostability of nitrilase. Enzyme and Microbial Technology, 113, 52–58.CrossRefGoogle Scholar
  35. 35.
    Behrens, G. A., Hummel, A., Padhi, S. K., Schätzle, S., & Bornscheuer, U. T. (2011). Discovery and protein engineering of biocatalysts for organic synthesis. Advanced Synthesis & Catalysis, 353(13), 2191–2215.CrossRefGoogle Scholar
  36. 36.
    Ema, T., Ide, S., Okita, N., & Sakai, T. (2008). Highly efficient chemoenzymatic synthesis of methyl (R)-o-chloromandelate, a key intermediate for clopidogrel, via asymmetric reduction with recombinant Escherichia coli. Advanced Synthesis & Catalysis, 350(13), 2039–2044.CrossRefGoogle Scholar
  37. 37.
    Guo, J., Mu, X., Zheng, C., & Xu, Y. (2009). A highly stable whole-cell biocatalyst for the enantioselective synthesis of optically active alpha-hydroxy acids. Journal of Chemical Technology and Biotechnology, 84(12), 1787–1792.CrossRefGoogle Scholar
  38. 38.
    Chen, R., Deng, J., Lin, J., Yin, X., Xie, T., Yang, S., & Wei, D. (2016). Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis. Biotechnology and Applied Biochemistry, 63(4), 465–470.CrossRefGoogle Scholar
  39. 39.
    Lei, J., Zhou, Y. F., Li, L. F., & Su, X. D. (2009). Structural and biochemical analyses of YvgN and YtbE from Bacillus subtilis. Protein Science, 18(8), 1792–1800.CrossRefGoogle Scholar
  40. 40.
    Chenault, H. K., & Whitesides, G. M. (1987). Regeneration of nicotinamide cofactors for use in organic synthesis. Applied Biochemistry and Biotechnology, 14(2), 147–197.CrossRefGoogle Scholar
  41. 41.
    Wu, H., Tian, C. Y., Song, X. K., Liu, C., Yang, D., & Jiang, Z. Y. (2013). Methods for the regeneration of nicotinamide coenzymes. Green Chemistry, 15(7), 1773–1789.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhouChina
  2. 2.Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhouChina

Personalised recommendations