Applied Biochemistry and Biotechnology

, Volume 186, Issue 3, pp 764–778 | Cite as

Tissue Indices of Telomere Length and p53 in Patients with Different Gastrointestinal Tumors: Correlation with Clinicopathological Status

  • Hala M. ElBadre
  • Reham I. El-MahdyEmail author
  • Nahed A. Mohamed
  • Madeha M. Zakhary
  • Doaa W. Maximous


Telomere length dysfunction is involved in the generation of genomic rearrangements that drive progression to malignancy. A set of serological markers for telomere dysfunction, namely chitinase and N-acetylglucosaminidase (NAG), DNA damage, and tissue alteration of p53 have been identified. The probability that genomic damage, accumulation of reactive oxygen species, and shorter telomeres may be related to the onset and advancement of gastrointestinal (GI) tumors. A total of 40 patients with GI tumors and 20 healthy controls with matched age and sex were included. Estimation of serum chitinase, NAG, lipid peroxide (LPER), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase by colorimetric methods, and p53 by ELISA were assessed. Related clinicopathological features were determined. Serological chitinase, NO, LPER, and p53 were significantly increased, SOD was significantly decreased (p ˂ 0.001 for each) in GI tumor patients compared with controls and correlated significantly with age. There was a significant correlation between telomere dysfunction indices, p53, oxidative stress indices, and malignant stages of GI cancer patients. Moreover, a significant difference in the mean serum levels of indices between control, malignant, and benign subjects was found. Accordingly, these biomarkers play an important role in the pathogenesis of GI cancer and their estimation may predict the GI tumor behavior.


Chitinase Gastrointestinal tumors NAG Oxidative stress markers p53 Telomere dysfunction 



This research was funded by the authors themselves.

Compliance with Ethical Standards

The study was conducted in accordance with the Declaration of Helsinki and approved by the local Clinical Research Ethics Committee.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Acharya, A., Markar, S. R., Matar, M., Ni, M., & Hanna, G. B. (2017). Use of tumor markers in gastrointestinal cancers: surgeon perceptions and cost-benefit trade-off analysis. Annals of Surgical Oncology, 24(5), 1165–1173.CrossRefGoogle Scholar
  2. 2.
    Aebi, H. (1984). [13] Catalase in vitro. Methods in Enzymology, 105, 121–126.CrossRefGoogle Scholar
  3. 3.
    Attallah, A. M., Abdel-Aziz, M. M., El-Sayed, A. M., & Tabll, A. A. (2003). Detection of serum p53 protein in patients with different gastrointestinal cancers. Cancer Detection and Prevention, 27(2), 127–131.CrossRefGoogle Scholar
  4. 4.
    Balmus, I. M., Ciobica, A., Trifan, A., & Stanciu, C. (2016). The implications of oxidative stress and antioxidant therapies in inflammatory bowel disease: clinical aspects and animal models. Saudi journal of gastroenterology: official journal of the Saudi Gastroenterology Association, 22, 3.CrossRefGoogle Scholar
  5. 5.
    Beevi, S. S. S., Rasheed, A. M. H., & Geetha, A. (2004). Evaluation of oxidative stress and nitric oxide levels in patients with oral cavity cancer. Japanese Journal of Clinical Oncology, 34(7), 379–385.CrossRefGoogle Scholar
  6. 6.
    Bhattacharyya, A., Chattopadhyay, R., Mitra, S., & Crowe, S. E. (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological Reviews, 94(2), 329–354.CrossRefGoogle Scholar
  7. 7.
    Bieging, K. T., Mello, S. S., & Attardi, L. D. (2014). Unravelling mechanisms of p53-mediated tumour suppression. Nature Reviews Cancer, 14(5), 359–370.CrossRefGoogle Scholar
  8. 8.
    Cao, D. Z., Ou, X. L., & Yu, T. (2017). The association of p53 expression levels with clinicopathological features and prognosis of patients with colon cancer following surgery. Oncology Letters, 13(5), 3538–3546.CrossRefGoogle Scholar
  9. 9.
    Didžiapetrienė, J., Bublevič, J., Smailytė, G., Kazbarienė, B., & Stukas, R. (2014). Significance of blood serum catalase activity and malondialdehyde level for survival prognosis of ovarian cancer patients. Medicina, 50(4), 204–208.CrossRefGoogle Scholar
  10. 10.
    Duffy, M. J., Synnott, N. C., & Crown, J. (2017). Mutant p53 as a target for cancer treatment. European Journal of Cancer, 83, 258–265.CrossRefGoogle Scholar
  11. 11.
    Fiaschi, T., & Chiarugi, P. (2012). Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. International journal of cell biology, 2012, 1–8.CrossRefGoogle Scholar
  12. 12.
    Forcados, G., Chinyere, C., & Shu, M. (2016). Acalypha wilkesiana: therapeutic and toxic potential. J. Med. Surg. Pathol, 1, 122.Google Scholar
  13. 13.
    Grierson, P., Lim, K.-H., & Amin, M. (2017). Immunotherapy in gastrointestinal cancers. Journal of gastrointestinal oncology, 8(3), 474–484.CrossRefGoogle Scholar
  14. 14.
    Hientz, K., Mohr, A., Bhakta-Guha, D., & Efferth, T. (2017). The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget, 8, 8921.CrossRefGoogle Scholar
  15. 15.
    Ho, J. C., Chan-Yeung, M., Ho, S., Mak, J., Ip, M., Ooi, G., Wong, M., Tsang, K., & Lam, W. (2007). Disturbance of systemic antioxidant profile in nonsmall cell lung carcinoma. European Respiratory Journal, 29(2), 273–278.CrossRefGoogle Scholar
  16. 16.
    Jiang, H., Schiffer, E., Song, Z., Wang, J., Zürbig, P., Thedieck, K., Moes, S., Bantel, H., Saal, N., & Jantos, J. (2008). Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proceedings of the National Academy of Sciences, 105(32), 11299–11304.CrossRefGoogle Scholar
  17. 17.
    Khan, M. A., Tania, M., Zhang, D.-z., & Chen, H.-c. (2010). Antioxidant enzymes and cancer. Chinese Journal of Cancer Research, 22(2), 87–92.CrossRefGoogle Scholar
  18. 18.
    Kirchner, H., Shaheen, F., Kalscheuer, H., Schmid, S. M., Oster, H., & Lehnert, H. (2017). The telomeric complex and metabolic disease. Genes, 8(7), 176.CrossRefGoogle Scholar
  19. 19.
    Kirsch, D. G., & Kastan, M. B. (1998). Tumor-suppressor p53: implications for tumor development and prognosis. Journal of Clinical Oncology, 16(9), 3158–3168.CrossRefGoogle Scholar
  20. 20.
    Kishtagari, A., & Watts, J. (2017). Biological and clinical implications of telomere dysfunction in myeloid malignancies. Therapeutic advances in hematology, 8(11), 317–326.CrossRefGoogle Scholar
  21. 21.
    Lee, Y. G., Chung, K.-C., Wi, S. G., Lee, J. C., & Bae, H.-J. (2009). Purification and properties of a chitinase from Penicillium sp. LYG 0704. Protein Expression and Purification, 65(2), 244–250.CrossRefGoogle Scholar
  22. 22.
    Leone, A., Roca, M. S., Ciardiello, C., Costantini, S., & Budillon, A. (2017). Oxidative stress gene expression profile correlates with cancer patient poor prognosis: identification of crucial pathways might select novel therapeutic approaches. Oxidative Medicine and Cellular Longevity, 2017, 1–18.CrossRefGoogle Scholar
  23. 23.
    Libreros, S., Garcia-Areas, R., & Iragavarapu-Charyulu, V. (2013). CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors. Immunologic Research, 57(1–3), 99–105.CrossRefGoogle Scholar
  24. 24.
    Lv, Y., Zhang, Y., Li, X., Ren, X., Wang, M., Tian, S., Hou, P., Shi, B., & Yang, Q. (2017). Long telomere length predicts poor clinical outcome in esophageal cancer patients. Pathology-Research and Practice, 213(2), 113–118.CrossRefGoogle Scholar
  25. 25.
    Mahfouz, N., Tahtouh, R., Alaaeddine, N., El Hajj, J., Sarkis, R., Hachem, R., Raad, I., & Hilal, G. (2017). Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS One, 12(6), e0179202.CrossRefGoogle Scholar
  26. 26.
    Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. The FEBS Journal, 47, 469–474.Google Scholar
  27. 27.
    Moaven, O., Raziee, H., Bowne, W., Abbaszadegan, M. R., & Fuchs, B. C. (2016). Disease biomarkers in gastrointestinal malignancies. Disease Markers, 2016, 1–3.CrossRefGoogle Scholar
  28. 28.
    Morry, J., Ngamcherdtrakul, W. and Yantasee, W. (2016) Oxidative stress in cancer and fibrosis: opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox biology.Google Scholar
  29. 29.
    O’sullivan, R. J., & Karlseder, J. (2010). Telomeres: protecting chromosomes against genome instability. Nature Reviews Molecular Cell Biology, 11(3), 171–181.CrossRefGoogle Scholar
  30. 30.
    Olfat, S. G., Yasser, N. H., Moataz, K. M., Ziad, G. S., & Ahmed, E. M. (2014). Chitinase-3-like protein1 (YKL-40) as biomarker in serum of Egyptian breast cancer females. Biochemistry and Analytical Biochemistry, 3, 1.CrossRefGoogle Scholar
  31. 31.
    Ozaki, T., & Nakagawara, A. (2011). Role of p53 in cell death and human cancers. Cancer, 3(1), 994–1013.CrossRefGoogle Scholar
  32. 32.
    Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169.PubMedGoogle Scholar
  33. 33.
    Perrone, G., Vincenzi, B., Santini, D., Verzı, A., Tonini, G., Vetrani, A., & Rabitti, C. (2004). Correlation of p53 and bcl-2 expression with vascular endothelial growth factor (VEGF), microvessel density (MVD) and clinico-pathological features in colon cancer. Cancer Letters, 208(2), 227–234.CrossRefGoogle Scholar
  34. 34.
    Pu, X. x., Huang, G. l., Guo, H. q., Guo, C. c., Li, H., Ye, S., Ling, S., Jiang, L., Tian, Y., & Lin, T. y. (2010). Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. Journal of Gastroenterology and Hepatology, 25(10), 1674–1680.CrossRefGoogle Scholar
  35. 35.
    Raynaud, C. M., Sabatier, L., Philipot, O., Olaussen, K. A., & Soria, J.-C. (2008). Telomere length, telomeric proteins and genomic instability during the multistep carcinogenic process. Critical Reviews in Oncology/Hematology, 66(2), 99–117.CrossRefGoogle Scholar
  36. 36.
    Reissig, J. L., Strominger, J. L., & Leloir, L. F. (1955). A modified colorimetric method for the estimation of N-acetylamino sugars. Journal of Biological Chemistry, 217(2), 959–966.PubMedGoogle Scholar
  37. 37.
    Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011). Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes & Cancer, 2(4), 466–474.CrossRefGoogle Scholar
  38. 38.
    Rodrigues, S. F., & Granger, D. N. (2015). Blood cells and endothelial barrier function. Tissue barriers, 3(1-2), e978720.CrossRefGoogle Scholar
  39. 39.
    Saha, S. K., Lee, S. B., Won, J., Choi, H. Y., Kim, K., Yang, G.-M., Dayem, A. A., & Cho, S.-g. (2017). Correlation between oxidative stress, nutrition, and cancer initiation. International Journal of Molecular Sciences, 18(7), 1544.CrossRefGoogle Scholar
  40. 40.
    Salpea, K. D., Talmud, P. J., Cooper, J. A., Maubaret, C. G., Stephens, J. W., Abelak, K., & Humphries, S. E. (2010). Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis, 209(1), 42–50.CrossRefGoogle Scholar
  41. 41.
    Škrha, J., Perušicová, J., Štolba, P., Stibor, V., & Pav, J. (1987). Comparison of N-acetyl-β-glucosaminidase and albuminuria with clinical finding of microangiopathy in type I diabetes mellitus. Clinica Chimica Acta, 166(2–3), 135–141.CrossRefGoogle Scholar
  42. 42.
    Slawson, C., Pidala, J., & Potter, R. (2001). Increased N-acetyl-β-glucosaminidase activity in primary breast carcinomas corresponds to a decrease in N-acetylglucosamine containing proteins. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1537(2), 147–157.CrossRefGoogle Scholar
  43. 43.
    Song, Z. (2017) Serum chitinase activity to predict survival and metastasis of colorectal cancer. American Society of Clinical Oncology.Google Scholar
  44. 44.
    Song, Z., Von Figura, G., Liu, Y., Kraus, J. M., Torrice, C., Dillon, P., Rudolph-Watabe, M., Ju, Z., Kestler, H. A., & Sanoff, H. (2010). Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell, 9(4), 607–615.CrossRefGoogle Scholar
  45. 45.
    Srivastava, S., Natu, S., Gupta, A., Pal, K., Singh, U., Agarwal, G., Singh, U., Goel, M., & Srivastava, A. (2009). Lipid peroxidation and antioxidants in different stages of cervical cancer: prognostic significance. Indian Journal of Cancer, 46(4), 297–302.CrossRefGoogle Scholar
  46. 46.
    Tahara, T., Shibata, T., Kawamura, T., Horiguchi, N., Okubo, M., Nakano, N., Ishizuka, T., Nagasaka, M., Nakagawa, Y., & Ohmiya, N. (2016). Telomere length shortening in gastric mucosa is a field effect associated with increased risk of gastric cancer. Virchows Archiv, 469(1), 19–24.CrossRefGoogle Scholar
  47. 47.
    Thayer, W. S. (1984). Serum lipid peroxides in rats treated chronically with adriamycin. Biochemical Pharmacology, 33(14), 2259–2263.CrossRefGoogle Scholar
  48. 48.
    Van Bezooijen, R., Que, I., Ederveen, A., Kloosterboer, H., Papapoulos, S., & Lowik, C. (1998). Plasma nitrate+ nitrite levels are regulated by ovarian steroids but do not correlate with trabecular bone mineral density in rats. Journal of Endocrinology, 159(1), 27–34.CrossRefGoogle Scholar
  49. 49.
    Wang, J., Sheng, Z., Yang, W., & Cai, Y. (2016). Elevated serum concentration of chitinase 3-like 1 is an independent prognostic biomarker for poor survival in lung cancer patients. Cellular Physiology and Biochemistry, 38(2), 461–468.CrossRefGoogle Scholar
  50. 50.
    Wang, Z., & Sun, Y. (2010). Targeting p53 for novel anticancer therapy. Translational Oncology, 3(1), 1–12.CrossRefGoogle Scholar
  51. 51.
    Woods, S. J., Hannan, K. M., Pearson, R. B., & Hannan, R. D. (2015). The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1849(7), 821–829.CrossRefGoogle Scholar
  52. 52.
    Wörmann, S. M., Song, L., Ai, J., Diakopoulos, K. N., Kurkowski, M. U., Görgülü, K., Ruess, D., Campbell, A., Doglioni, C., & Jodrell, D. (2016). Loss of P53 function activates JAK2–STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology, 151, 180–193 e112.CrossRefGoogle Scholar
  53. 53.
    Wu, X., Amos, C. I., Zhu, Y., Zhao, H., Grossman, B. H., Shay, J. W., Luo, S., Hong, W. K., & Spitz, M. R. (2003). Telomere dysfunction: a potential cancer predisposition factor. Journal of the National Cancer Institute, 95, 1211–1218.CrossRefGoogle Scholar
  54. 54.
    Xiao, F., Zheng, X., Cui, M., Shi, G., Chen, X., Li, R., Song, Z., Rudolph, K. L., Chen, B., & Ju, Z. (2011). Telomere dysfunction–related serological markers are associated with type 2 diabetes. Diabetes Care, 34(10), 2273–2278.CrossRefGoogle Scholar
  55. 55.
    Zhao, Z., Pan, X., Liu, L., & Liu, N. (2014). Telomere length maintenance, shortening, and lengthening. Journal of Cellular Physiology, 229(10), 1323–1329.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hala M. ElBadre
    • 1
  • Reham I. El-Mahdy
    • 1
    Email author
  • Nahed A. Mohamed
    • 1
  • Madeha M. Zakhary
    • 1
  • Doaa W. Maximous
    • 2
  1. 1.Department of Medical Biochemistry, Faculty of MedicineAssiut UniversityAssiutEgypt
  2. 2.Department of Surgical Oncology, South Egypt Cancer InstituteAssiut UniversityAssiutEgypt

Personalised recommendations