Applied Biochemistry and Biotechnology

, Volume 186, Issue 3, pp 525–534 | Cite as

Analysis of Novel Antioxidant Sesquarterpenes (C35 Terpenes) Produced in Recombinant Corynebacterium glutamicum

  • Sambandam Ravikumar
  • Han Min Woo
  • Jong-il ChoiEmail author


Novel synthetic isoprenoids have been synthesized in engineered microbial hosts by evolving terpene synthase or expressing heterologous terpene synthases. Recently, the native operon, crtNaNcM derived from Planococcus sp. PAMC 21323, has isolated for potential industrial applications of C35 carotenoids. For the first time, novel C35 carotenoids (sesquarterpene) were synthesized in Corynebacterium glutamicum expressing the crtNaNcM genes. The recombinant strains accumulate various sesquarterpene including 4-apolycopene (red color), 4-aponeurosporene (yellow color), and no pigmentation, depending on the expression of the genetic elements of the crtNaNcM genes. Subsequently, the carotenoid extract from the cells harboring pCES-H36-CrtNaNcM was analyzed, resulting in significantly higher antioxidant activity than those of other strains harboring pCES-H36-CrtNcM and pCES-H36-CrtNaNc, respectively. This study will promote further engineering of C. glutamicum to increase sesquarterpene productions.


CrtMN C35 carotenoids Antioxidant activity Corynebacterium glutamicum 



The authors would liketo thank Dr. Ki Jun Jeong at KAIST for providing a pCES-H36-GFP vector.


This study was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No.NRF-2015R1A2A2A01004733), by Golden Seed Project (213008-05-2-SB910), Ministry of Agriculture, Ministry of Oceans and Fisheries.

Compliance with Ethical Standard

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Netzer, R., Stafsnes, M. H., Andreassen, T., Goksoyr, A., Bruheim, P., & Brautaset, T. (2010). Biosynthetic pathway for gamma-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclases. Journal of Bacteriology, 192(21), 5688–5699.CrossRefGoogle Scholar
  2. 2.
    Tobias, A. V., & Arnold, F. H. (2006). Biosynthesis of novel carotenoid families based on unnatural carbon backbones: a model for diversification of natural product pathways. Biochimica et Biophysica Acta, 1761(2), 235–246.CrossRefGoogle Scholar
  3. 3.
    Umeno, D., Tobias, A. V., & Arnold, F. H. (2005). Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiology and Molecular Biology Reviews, 69(1), 51–78.CrossRefGoogle Scholar
  4. 4.
    Albrecht, M., Takaichi, S., Steiger, S., Wang, Z. Y., & Sandmann, G. (2000). Novel hydroxycarotenoids with improved antioxidative properties produced by gene combination in Escherichia coli. Nature Biotechnology, 18(8), 843–846.CrossRefGoogle Scholar
  5. 5.
    Osawa, A., Ishii, Y., Sasamura, N., Morita, M., Kasai, H., Maoka, T., & Shindo, K. (2010). Characterization and antioxidative activities of rare C(50) carotenoids-sarcinaxanthin, sarcinaxanthin monoglucoside, and sarcinaxanthin diglucoside-obtained from Micrococcus yunnanensis. Journal of Oleo Science, 59(12), 653–659.CrossRefGoogle Scholar
  6. 6.
    Lee, P. C., & Schmidt-Dannert, C. (2002). Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Applied Microbiology and Biotechnology, 60(1-2), 1–11.CrossRefGoogle Scholar
  7. 7.
    Shindo, K., Endo, M., Miyake, Y., Wakasugi, K., Morritt, D., Bramley, P. M., Fraser, P. D., Kasai, H., & Misawa, N. (2014). Methyl 5-glucosyl-5,6-dihydro-apo-4,4′-lycopenoate, a novel antioxidative glyco-C30-carotenoic acid produced by a marine bacterium Planococcus maritimus. Journal of Antibiotics, 67(10), 731–732.CrossRefGoogle Scholar
  8. 8.
    Umeno, D., & Arnold, F. H. (2003). A C35 carotenoid biosynthetic pathway. Applied and Environmental Microbiology, 69(6), 3573–3579.CrossRefGoogle Scholar
  9. 9.
    Heider, S. A. E., Peters-Wendisch, P., & Wendisch, V. F. (2012). Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology, 12(1), 198.CrossRefGoogle Scholar
  10. 10.
    Krubasik, P., Takaichi, S., Maoka, T., Kobayashi, M., Masamoto, K., & Sandmann, G. (2001). Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates. Archives of Microbiology, 176(3), 217–223.CrossRefGoogle Scholar
  11. 11.
    Kang, M. K., Eom, J. H., Kim, Y., Um, Y., & Woo, H. M. (2014). Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnology Letters, 36(10), 2069–2077.CrossRefGoogle Scholar
  12. 12.
    Heider, S. A. E., Wolf, N., Hofemeier, A., Peters-Wendisch, P., & Wendisch, V. F. (2014). Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2.
  13. 13.
    Woo, H. M., & Park, J. B. (2014). Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum. Journal of Biotechnology, 180, 43–51.CrossRefGoogle Scholar
  14. 14.
    Yim, S. S., An, S. J., Kang, M., Lee, J., & Jeong, K. J. (2013). Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnology and Bioengineering, 110(11), 2959–2969.CrossRefGoogle Scholar
  15. 15.
    Kim, C.-H., Park, M.-K., Kim, S.-K., & Cho, Y.-H. (2014). Antioxidant capacity and anti-inflammatory activity of lycopene in watermelon. International Journal of Food Science & Technology, 49(9), 2083–2091.CrossRefGoogle Scholar
  16. 16.
    Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202–1205.CrossRefGoogle Scholar
  17. 17.
    Steiger, S., Sandmann, G., Fraser, P. D., Perez-Fons, L., & Cutting, S. M. (2015). Annotation and functional assignment of the genes for the C30 carotenoid pathways from the genomes of two bacteria: Bacillus indicus and Bacillus firmus. Microbiology, 161(1), 194–202.CrossRefGoogle Scholar
  18. 18.
    Raisig, A., & Sandmann, G. (2001). Functional properties of diapophytoene and related desaturases of C(30) and C(40) carotenoid biosynthetic pathways. Biochimica et Biophysica Acta, 1533(2), 164–170.CrossRefGoogle Scholar
  19. 19.
    Takaichi, S. (2000). Characterization of carotenes in a combination of a C(18) HPLC column with isocratic elution and absorption spectra with a photodiode-array detector. Photosynthesis Research, 65(1), 93–99.CrossRefGoogle Scholar
  20. 20.
    Takaichi, S., Inoue, K., Akaike, M., Kobayashi, M., Oh-oka, H., & Madigan, M. T. (1997). The major carotenoid in all known species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Archives of Microbiology, 168(4), 277–281.CrossRefGoogle Scholar
  21. 21.
    Köcher, S., Breitenbach, J., Müller, V., & Sandmann, G. (2008). Structure, function and biosynthesis of carotenoids in the moderately halophilic bacterium Halobacillus halophilus. Archives of Microbiology, 191, 95–104.CrossRefGoogle Scholar
  22. 22.
    Sharoni, Y., Linnewiel-Hermoni, K., Khanin, M., Salman, H., Veprik, A., Danilenko, M., & Levy, J. (2012). Carotenoids and apocarotenoids in cellular signaling related to cancer: a review. Molecular Nutrition & Food Research, 56(2), 259–269.CrossRefGoogle Scholar
  23. 23.
    Firn, R. D., & Jones, C. G. (2000). The evolution of secondary metabolism—a unifying model. Molecular Microbiology, 37(5), 989–994.CrossRefGoogle Scholar
  24. 24.
    Kim, S. H., Kim, J. H., Lee, B. Y., & Lee, P. C. (2014). The astaxanthin dideoxyglycoside biosynthesis pathway in Sphingomonas sp. PB304. Applied Microbiology and Biotechnology, 98(24), 9993–10003.CrossRefGoogle Scholar
  25. 25.
    Lee, P. C., Salomon, C., Mijts, B., & Schmidt-Dannert, C. (2008). Biosynthesis of ubiquinone compounds with conjugated prenyl side chains. Applied and Environmental Microbiology, 74(22), 6908–6917.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sambandam Ravikumar
    • 1
  • Han Min Woo
    • 2
  • Jong-il Choi
    • 1
    Email author
  1. 1.Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuSouth Korea
  2. 2.Department of Food Science and BiotechnologySungkyunkwan University (SKKU)SuwonRepublic of Korea

Personalised recommendations