Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 3, pp 597–612 | Cite as

Effect of Enzymatic Digestion of Protein Derivatives Obtained from Mucuna pruriens L. on Production of Proinflammatory Mediators by BALB/c Mouse Macrophages

  • Edwin E. Martínez Leo
  • Victor E. Arana Argáez
  • Juan J. Acevedo Fernández
  • Rosa Moo Puc
  • Maira R. Segura Campos
Article
  • 104 Downloads

Abstract

Inflammation is considered to be a major risk factor for the pathogenesis of chronic non-communicable diseases. Macrophages are important immune cells, which regulate inflammation and host defense by secretion of proinflammatory mediators. Obtaining biopeptides by enzymatic hydrolysis adds value to proteins of vegetative origin, such as Mucuna pruriens L. The present study evaluated the effect of enzymatic digestion of protein derivatives obtained from M. pruriens L. on the production of proinflammatory mediators by BALB/c mouse macrophages. Five different molecular weight peptide fractions were obtained (F > 10, 5–10, 3–5, 1–3, and < 1 kDa, respectively). At 300 μg/mL, F5–10 kDa inhibited 50.26 and 61.00% NO and H2O2 production, respectively. Moreover, F5–10 kDa reduced the IL-6 and TNFα levels to 60.25 and 69.54%, respectively. After enzymatic digestive simulation, F5–10 kDa decreased the inflammatory mediators.

Keywords

Bioactive compounds Anti-inflammatory activity Protein hydrolyzate Inflammation 

Notes

Acknowledgments

This paper is part of the “Scientific Research Development Directed to develop Protein Derivative of Mucuna pruriens with Potential Biological Activity for Prevention and / or Treatment of Chronic Diseases Associated with Overweight and Obesity” project funded by CONACYT-Mexico (Project 154307).

Compliance with Ethical Standards

Conflict of Interest

The authors declare they have no conflicts of interest.

References

  1. 1.
    Segura Campos, M., Chel, L., & Betancur, D. (2013). Bioactividad de péptidos derivados de proteínas alimentarias. Barcelona: Omnia Science.CrossRefGoogle Scholar
  2. 2.
    Herrera, F., Ruiz, J., Acevedo, J., Betancur, & Segura, M. (2014). ACE inhibitory, hypotensive and antioxidant peptide fractions from Mucuna pruriens proteins. Process Biochemistry, 49, 1691–1698.CrossRefGoogle Scholar
  3. 3.
    Herrera, F., Ruiz, J., Betancur, D., & Segura, M. (2016). Potential therapeutic applications of Mucuna pruriens peptide fractions purified by high-performance liquid chromatography as angiotensin-converting enzyme inhibitors, antioxidants, antithrombotic and hypocholesterolemic agents. Journal of Medicinal Food, 19(2), 187–195.CrossRefGoogle Scholar
  4. 4.
    Hirota, T., Nonaka, A., Matsushita, A., Uchida, N., Ohki, K., Asakura, M., & Kitakaze, M. (2011). Milk casein-derived tripeptides, VPP and IPP induced NO production in cultured endothelial cells and endothelium-dependent relaxation of isolated aortic rings. Heart and Vessels, 26(5), 549–556.CrossRefGoogle Scholar
  5. 5.
    Kovacs-Nolan, J., Zhang, H., Ibuki, M., Nakamori, T., Yoshiura, K., Turner, P. V., Matsui, T., & Mine, Y. (2012). The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochimica et Biophysica Acta, 1820(11), 1753–1763.CrossRefGoogle Scholar
  6. 6.
    Mochizuki, M., Shigemura, H., & Hasegawa, N. (2010). Anti-inflammatory effect of enzymatic hydrolysate of corn gluten in an experimental model of colitis. Journal of Pharmacy and Pharmacology, 62(3), 389–392.CrossRefGoogle Scholar
  7. 7.
    Joshi, I., Sudhakar, S., & Nazeer, R. (2016). Anti-inflammatory properties of bioactive peptide derived from gastropod influenced by enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 180(6), 1128–1140.  https://doi.org/10.1007/s12010-016-2156-y.CrossRefPubMedGoogle Scholar
  8. 8.
    Kong, F., & Singh, R. (2010). A human gastric simulator (HGS) to study food digestion in human stomach. Journal of Food Science, 76, E627–E635.CrossRefGoogle Scholar
  9. 9.
    Segura-Campos, M., Chel, L., & Betancur, D. (2010). Effect of digestion on the bioavailability of peptides with biological activity. Revista Chilena de Nutrición, 37, 386–391.CrossRefGoogle Scholar
  10. 10.
    Hassan, H., & El-Gharib, N. (2014). Obesity and clinical riskiness relationship: therapeutic management by dietary antioxidant supplementation—a review. Applied Biochemistry and Biotechnology, 176(3), 647–669.  https://doi.org/10.1007/s12010-015-1602-6.CrossRefGoogle Scholar
  11. 11.
    Abarikwu, S. O. (2014). Kolaviron, a natural flavonoid from the seeds of Garcinia kola, reduces LPS-induced inflammation in macrophages by combined inhibition of IL-6 secretion, and inflammatory transcription factors, ERK1/2, NF-kappaB, p38, Akt, p-c-JUN and JNK. Biochimica et Biophysica Acta, 1840(7), 2373–2381.CrossRefGoogle Scholar
  12. 12.
    Buckley, C., Gilroy, D., & Serhan, C. (2014). Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity, 40(3), 315–327.CrossRefGoogle Scholar
  13. 13.
    Kumar, S., Meena, R., & Paulraj, R. (2016). Role of macrophage (M1 and M2) in titanium-dioxide nanoparticle-induced oxidative stress and inflammatory response in rat. Applied Biochemistry and Biotechnology, 180(7), 1257–1275.  https://doi.org/10.1007/s12010-016-2165-x.CrossRefPubMedGoogle Scholar
  14. 14.
    Solini, A. M., Stignani, E., Melchiorri, M., Santini, L., Rossi, E., & al, C. e. (2010). Soluble human leukocyte antigen-g expression and glucose tolerance in subjects with different degrees of adiposity. Journal of Clinical Endocrinology & Metabolism, 95(7), 3342–3346.CrossRefGoogle Scholar
  15. 15.
    Cho, M. J., Unklesbay, N., Hsieh, F., & Clarke, A. D. (2004). Hydrophobicity of bitter peptides from soy protein hydrolysates. Journal of Agricultural and Food Chemistry, 52(19), 5895–5901.CrossRefGoogle Scholar
  16. 16.
    Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., & Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82(13), 1107–1112.CrossRefGoogle Scholar
  17. 17.
    Gómez, R., Hernández, H., Tamez, P., Tamez, R., Quintanilla, R., Monreal, E., & Rodríguez, C. (2010). Antitumor and immunomodulating potencial of Coriandrum sativum, Piper nigrum and Cinnamomum zeylanicum. Journal Natural Products, 3, 54–63.Google Scholar
  18. 18.
    HANNA Instruments. HI 3844 Test Kit de Peróxido de Hidrógeno.Google Scholar
  19. 19.
    ELISA technical guide and protocols TR0065, 0. TECH TIP #65. Thermo scientific. 2010 Thermo Fisher Scientific Inc.Google Scholar
  20. 20.
    Hur, S., Lim, B., Decker, E., & Mcclements, D. (2011). In vitro human digestion models for food applications. A review. Food Chemistry, 125(1), 1–12.CrossRefGoogle Scholar
  21. 21.
    Cu, T., Betancur, D., Gallegos, S., Sandoval, M., & Chel, L. (2015). Studies in vitro inhibition of the angiotensin-converting enzyme-I, hypotensive and antihypertensive effects of peptide fractions of V. unguiculata. Nutrición Hospitalaria, 32, 2117–2125.Google Scholar
  22. 22.
    Zhang, M., & Sun, M. (2014). Purification and identification of antioxidant peptides from Phaseolus vulgaris protein hydrolysates by pepsin-pancreatin. Journal Functional Food, 10, 191–200.CrossRefGoogle Scholar
  23. 23.
    Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J., Liao, B., He, H. L., & Li, H. (2015). Overview of antioxidant peptides derived from marine resources: the sources, characteristic, purification, and evaluation methods. Applied Biochemistry and Biotechnology, 176(7), 1815–1833.  https://doi.org/10.1007/s12010-015-1689-9.CrossRefPubMedGoogle Scholar
  24. 24.
    Laua, F., Josepha, J., McDonaldb, J., & Kalt, W. (2010). Attenuation of iNOS and COX2 by blueberry polyphenols is mediated through the suppression of NF-κB activation. Journal of Functional Foods, 1, 274–283.CrossRefGoogle Scholar
  25. 25.
    Dia, V., Bringe, N., & Mejia, E. (2014). Peptides in pepsin–pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages. Food Chemistry, 152, 423–431.CrossRefGoogle Scholar
  26. 26.
    Bum Ahn, C., Je, J., & Cho, Y. (2012). Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Research International, 49, 92–98.CrossRefGoogle Scholar
  27. 27.
    Kim, Y., Ahn, C., & Je, J. (2016). Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chemistry, 202, 9–14.CrossRefGoogle Scholar
  28. 28.
    Wink, D. A., Nims, R. W., Darbyshire, J. F., Christodoulou, D., Hanbauer, I., Cox, G. W., Laval, F., Laval, J., Cook, J. A., Krishna, M. C., DeGraff, W. G., & Mitchell, J. B. (1994). Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chemical Research & Toxicology, 7(4), 519–525.CrossRefGoogle Scholar
  29. 29.
    Udenigwe, C. C., Je, J. Y., Cho, Y. S., & Yada, R. Y. (2013). Almond protein hydrolysate fraction modulates the expression of proinflammatory cytokines and enzymes in activated macrophages. Food & Function, 4(5), 777–783.CrossRefGoogle Scholar
  30. 30.
    Moronta, J., Smaldini, P., Docena, G., & Añón, M. (2016). Peptides of amaranth were targeted as containing sequences with potential anti-inflammatory properties. Journal of Functional Foods, 21, 463–473.CrossRefGoogle Scholar
  31. 31.
    González, E., & Día, V. (2009). Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-κB pathway in the macrophage. Peptides, 30, 2388–2398.CrossRefGoogle Scholar
  32. 32.
    Aktan, F. (2004). iNOS-mediated nitric oxide production and its regulation. Life Sciences, 75(6), 639–653.CrossRefGoogle Scholar
  33. 33.
    López, L., Antunes, M., & Gutiérrez, J. (2016). Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chemistry, 203, 417–424.CrossRefGoogle Scholar
  34. 34.
    Besingi, R., & Clark, R. (2015). Extracellular protease digestion to evaluate membrane protein cell surface localization. Nature Protocols, 10(12), 2074–2080.CrossRefGoogle Scholar
  35. 35.
    Martínez, E., Avecedo, J., & Segura, M. (2016). Biopeptides with antioxidant and anti-inflammatory potential in the prevention and treatment of diabesity disease. Biomedicine & Pharmacotherapy, 83, 816–826.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Edwin E. Martínez Leo
    • 1
  • Victor E. Arana Argáez
    • 2
  • Juan J. Acevedo Fernández
    • 3
  • Rosa Moo Puc
    • 4
  • Maira R. Segura Campos
    • 1
  1. 1.Facultad de Ingeniería QuímicaUniversidad Autónoma de YucatánMéridaMexico
  2. 2.Facultad de QuímicaUniversidad Autónoma de YucatánMéridaMexico
  3. 3.Facultad de MedicinaUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  4. 4.Centro Médico Ignacio García Téllez, Instituto Mexicano del Seguro SocialUnidad de Investigación Médica Yucatán, Unidad Médica de Alta EspecialidadMéridaMexico

Personalised recommendations