Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 1, pp 256–270 | Cite as

Small Ubiquitin-Like Modifier Protein 3 Enhances the Solubilization of Human Bone Morphogenetic Protein 2 in E. coli

  • Muhammad Umair Hanif
  • Adnan Yaseen
  • Roquyya Gul
  • Muhammad Usman Mirza
  • Muhammad Hassan Nawaz
  • Syed Shoaib Ahmed
  • Salman Aziz
  • Saima Chaudhary
  • Ayyaz Ali Khan
  • Muhammad Shoaib
Article

Abstract

Small ubiquitin-like modifier (SUMO) fusion technology is widely used in the production of heterologous proteins from prokaryotic system to aid in protein solubilization and refolding. Due to an extensive clinical application of human bone morphogenetic protein 2 (hBMP2) in bone augmentation, total RNA was isolated from human gingival tissue and mature gene was amplified through RT-PCR, cloned (pET21a), sequence analyzed, and submitted to GenBank (Accession no. KF250425). To obtain soluble expression, SUMO3 was tagged at the N-terminus of hBMP2 gene (pET21a/SUMO3-hBMP2), transferred in BL21 codon+, and ~ 40% soluble expression was obtained on induction with IPTG. The dimerized hBMP2 was confirmed with Western blot, native PAGE analysis, and purified by fast protein liquid chromatography with 0.5 M NaCl elution. The cleavage of SUMO3 tag from hBMP2 converted it to an insoluble form. Computational 3D structural analysis of the SUMO3-hBMP2 was performed and optimized by molecular dynamic simulation. Protein-protein interaction of SUMO3-hBMP2 with BMP2 receptor was carried out using HADDOCK and inferred stable interaction. The alkaline phosphatase assay of SUMO3-hBMP2 on C2C12 cells showed maximum 200-ng/ml dose-dependent activity. We conclude that SUMO3-tagged hBMP2 is more suited for generation of soluble form of the protein and addition of SUMO3 tag does not affect the functional activity of hBMP2.

Keywords

hBMP2 SUMO3 Rosetta gami B(DE3) BL21 codon+ Fast protein liquid chromatography Alkaline phosphatase 

Notes

Acknowledgements

The authors greatly acknowledge Dr. Muhammad Waheed Akhtar, Director School of Biological Sciences and his team from University of the Punjab, Lahore for their enormous support in the expression and purification experiments.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2736_MOESM1_ESM.docx (536 kb)
ESM 1 (DOCX 536 kb)

References

  1. 1.
    Gothard, D., Smith, E., Kanczler, J., et al. (2014). Tissue engineered bone using select growth factors: A comprehensive review of animal studies and clinical translation studies in man. European Cells and Materials, 28, 166–208.CrossRefPubMedGoogle Scholar
  2. 2.
    Carreira, A. C., Lojudice, F. H., Halcsik, E., Navarro, R. D., Sogayar, M. C., & Granjeiro, J. M. (2014). Bone morphogenetic proteins: Facts, challenges, and future perspectives. Journal of Dental Research, 93(4), 335–345.CrossRefPubMedGoogle Scholar
  3. 3.
    Berner, A., Reichert, J. C., Muller, M. B., et al. (2012). Treatment of long bone defects and non-unions: From research to clinical practice. Cell and Tissue Research, 347(3), 501–519.CrossRefPubMedGoogle Scholar
  4. 4.
    Krishnakumar, G.S., Roffi, A., Reale, D., Kon, E., & Filardo, G. (2017). Clinical application of bone morphogenetic proteins for bone healing: a systematic review. International Orthopaedics, 41(6), 1073–1083.CrossRefPubMedGoogle Scholar
  5. 5.
    Brazil, D. P., Church, R. H., Surae, S., Godson, C., & Martin, F. (2015). BMP signalling: Agony and antagony in the family. Trends in Cell Biology, 25(5), 249–264.CrossRefPubMedGoogle Scholar
  6. 6.
    Miyazono, K., Kamiya, Y., & Morikawa, M. (2010). Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry, 147(1), 35–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Hissnauer, T. N., Stiel, N., Babin, K., et al. (2017). Recombinant human bone morphogenetic protein-2 (rhBMP-2) for the treatment of nonunion of the femur in children and adolescents: a retrospective analysis. BioMed Research International, 2017, 5.  https://doi.org/10.1155/2017/3046842.CrossRefGoogle Scholar
  8. 8.
    Starman, J. S., Bosse, M. J., Cates, C. A., & Norton, H. J. (2012). Recombinant human bone morphogenetic protein-2 use in the off-label treatment of nonunions and acute fractures: A retrospective review. Journal of Trauma and Acute Care Surgery, 72(3), 676–681.CrossRefPubMedGoogle Scholar
  9. 9.
    Conway, J. D., Shabtai, L., Bauernschub, A., & Specht, S. C. (2014). BMP-7 versus BMP-2 for the treatment of long bone nonunion. Orthopedics, 37(12), e1049–e1057.CrossRefPubMedGoogle Scholar
  10. 10.
    Bishop, G. B., & Einhorn, T. A. (2007). Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. International Orthopaedics, 31(6), 721–727.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Baskin, D. S., Ryan, P., Sonntag, V., Westmark, R., & Widmayer, M. A. (2003). A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR™ allograft ring and the ATLANTIS™ anterior cervical plate. Spine, 28(12), 1219–1224.PubMedGoogle Scholar
  12. 12.
    Schedel, H., Schneller, A., Vogl, T., Müller, H. F., Mäurer, J., Südkamp, N., Eisenschenk, A., & Felix, R. (2000). Dynamic magnetic resonance tomography (MRI): A follow-up study after femur core decompression and instillation of recombinant human bone morphogenetic protein-2 (rhBMP-2) in avascular femur head necrosis. Rontgenpraxis; Zeitschrift fur radiologische Technik, 53(1), 16–24.PubMedGoogle Scholar
  13. 13.
    Sun, W., Li, Z., Gao, F., Shi, Z., Zhang, Q., & Guo, W. (2014). Recombinant human bone morphogenetic protein-2 in debridement and impacted bone graft for the treatment of femoral head osteonecrosis. PLoS One, 9(6), e100424.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ding, Y., & Wang, X. (2018). Long-term effects of bone morphogenetic protein-2–loaded calcium phosphate on maxillary sinus lift surgery for delayed and simultaneous dental implantation. Journal of Craniofacial Surgery, 29(1), e58–e61.PubMedGoogle Scholar
  15. 15.
    Katanec, D., Granić, M., Gabrić Pandurić, D., Majstorović, M., & Trampuš, Z. (2014). Use of recombinant human bone morphogenetic protein (rhBMP2) in bilateral alveolar ridge augmentation: Case report. Collegium Antropologicum, 38(1), 325–330.PubMedGoogle Scholar
  16. 16.
    Dhaliwal, J. S., Marulanda, J., Li, J., Alebrahim, S., Feine, J. S., & Murshed, M. (2017). In vitro comparison of two titanium dental implant surface treatments: 3M™ ESPE™ MDIs versus Ankylos®. International Journal of Implant Dentistry, 3(1), 27.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Karfeld-Sulzer, L. S., Siegenthaler, B., Ghayor, C., & Weber, F. E. (2015). Fibrin hydrogel based bone substitute tethered with BMP-2 and BMP-2/7 heterodimers. Materials (Basel), 8(12), 977–991.CrossRefGoogle Scholar
  18. 18.
    Ward, B. B., Brown, S. E., & Krebsbach, P. H. (2010). Bioengineering strategies for regeneration of craniofacial bone: A review of emerging technologies. Oral Diseases, 16(8), 709–716.CrossRefPubMedGoogle Scholar
  19. 19.
    Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518–524.CrossRefPubMedGoogle Scholar
  20. 20.
    Yin, J., Li, G., Ren, X., & Herrler, G. (2007). Select what you need: A comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Journal of Biotechnology, 127(3), 335–347.CrossRefPubMedGoogle Scholar
  21. 21.
    Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 72(2), 211–222.CrossRefPubMedGoogle Scholar
  22. 22.
    Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5, 172.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Grosjean, H., & Fiers, W. (1982). Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene, 18(3), 199–209.CrossRefPubMedGoogle Scholar
  24. 24.
    Hannig, G., & Makrides, S. C. (1998). Strategies for optimizing heterologous protein expression in Escherichia coli. Trends in Biotechnology, 16(2), 54–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Demain, A. L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27(3), 297–306.CrossRefPubMedGoogle Scholar
  26. 26.
    Cole, P. A. (1996). Chaperone-assisted protein expression. Structure, 4(3), 239–242.CrossRefPubMedGoogle Scholar
  27. 27.
    Marblestone, J. G., Edavettal, S. C., Lim, Y., Lim, P., Zuo, X., & Butt, T. R. (2006). Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO. Protein science: a publication of the Protein Society, 15(1), 182–189.CrossRefGoogle Scholar
  28. 28.
    Costa, S. J., Almeida, A., Castro, A., Domingues, L., & Besir, H. (2013). The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: A comparison with the traditional gene fusion technology. Applied Microbiology and Biotechnology, 97(15), 6779–6791.CrossRefPubMedGoogle Scholar
  29. 29.
    Kawabe, Y., Seki, M., Seki, T., Wang, W. S., Imamura, O., Furuichi, Y., Saitoh, H., & Enomoto, T. (2000). Covalent modification of the Werner's syndrome gene product with the ubiquitin-related protein, SUMO-1. The Journal of Biological Chemistry, 275(28), 20963–20966.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang, Z., Li, H., Guan, W., Ling, H., Wang, Z., Mu, T., Shuler, F. D., & Fang, X. (2010). Human SUMO fusion systems enhance protein expression and solubility. Protein Expression and Purification, 73(2), 203–208.CrossRefPubMedGoogle Scholar
  31. 31.
    Butt, T. R., Edavettal, S. C., Hall, J. P., & Mattern, M. R. (2005). SUMO fusion technology for difficult-to-express proteins. Protein Expression and Purification, 43(1), 1–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Valera, E., Isaacs, M. J., Kawakami, Y., Izpisua Belmonte, J. C., & Choe, S. (2010). BMP-2/6 heterodimer is more effective than BMP-2 or BMP-6 homodimers as inductor of differentiation of human embryonic stem cells. PLoS One, 5(6), e11167.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Webb, B., & Sali, A. (2014). Protein structure modeling with MODELLER. In D. Kihara (Ed.), Protein structure prediction (pp. 1–15). New York: Humana Press.Google Scholar
  34. 34.
    De Vries, S. J., Van Dijk, M., & Bonvin, A. M. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5(5), 883–897.CrossRefPubMedGoogle Scholar
  35. 35.
    Peroutka Iii, R. J., Orcutt, S. J., Strickler, J. E., & Butt, T. R. (2011). SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes. Methods in Molecular Biology, 705, 15–30.CrossRefPubMedGoogle Scholar
  36. 36.
    Sorensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 4(1), 1.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bi, W., Gu, Z., Zheng, Y., Zhang, X., Guo, J., & Wu, G. (2013). Heterodimeric BMP-2/7 antagonizes the inhibition of all-trans retinoic acid and promotes the osteoblastogenesis. PLoS One, 8(10), e78198.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Keller, S., Nickel, J., Zhang, J. L., Sebald, W., & Mueller, T. D. (2004). Molecular recognition of BMP-2 and BMP receptor IA. Nature Structural & Molecular Biology, 11(5), 481–488.CrossRefGoogle Scholar
  39. 39.
    Kirsch, T., Nickel, J., & Sebald, W. (2000). BMP-2 antagonists emerge from alterations in the low-affinity binding epitope for receptor BMPR-II. The EMBO Journal, 19(13), 3314–3324.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Johnson, E. S. (2004). Protein modification by SUMO. Annual Review of Biochemistry, 73(1), 355–382.CrossRefPubMedGoogle Scholar
  41. 41.
    Prakash, A., Parsons, S. J., Kyle, S., & Mcpherson, M. J. (2012). Recombinant production of self-assembling β-structured peptides using SUMO as a fusion partner. Microbial Cell Factories, 11(1), 92.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kong, B., & Guo, G. L. (2011). Enhanced in vitro refolding of fibroblast growth factor 15 with the assistance of SUMO fusion partner. PLoS One, 6(5), e20307.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Li, J. F., Cui, X. W., Ji, H. Y., Qiu, T., Ji, X. M., du, M. X., Wu, H. T., Xu, X. Z., & Zhang, S. Q. (2011). High efficient expression of bioactive human BMP-14 in E. Coli using SUMO fusion partner. The Protein Journal, 30(8), 592–597.CrossRefPubMedGoogle Scholar
  44. 44.
    Hanif, M.U., Gul, R., Hanif, M. I., & Hashmi, A.A. (2017). Heterologous secretory expression and characterization of dimerized bone morphogenetic protein 2 in bacillus subtilis. BioMed Research International, 2017, 11.  https://doi.org/10.1155/2017/9350537.CrossRefGoogle Scholar
  45. 45.
    Fu, Y. C., Nie, H., Ho, M. L., Wang, C. K., & Wang, C. H. (2008). Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnology and Bioengineering, 99(4), 996–1006.CrossRefPubMedGoogle Scholar
  46. 46.
    Serro, A., Bastos, M., Pessoa, J. C., & Saramago, B. (2004). Bovine serum albumin conformational changes upon adsorption on titania and on hydroxyapatite and their relation with biomineralization. Journal of Biomedical Materials Research Part A, 70(3), 420–427.CrossRefPubMedGoogle Scholar
  47. 47.
    Kmiecik, S., Gront, D., & Kolinski, A. (2007). Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field. BMC Structural Biology, 7(1), 43.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kosinski, J., Cymerman, I. A., Feder, M., Kurowski, M. A., Sasin, J. M., & Bujnicki, J. M. (2003). A “FRankenstein's monster” approach to comparative modeling: Merging the finest fragments of fold-recognition models and iterative model refinement aided by 3D structure evaluation. Proteins: Structure, Function, and Bioinformatics, 53(S6), 369–379.CrossRefGoogle Scholar
  49. 49.
    Fan, H., & Mark, A. E. (2004). Mimicking the action of folding chaperones in molecular dynamics simulations: Application to the refinement of homology-based protein structures. Protein science : a publication of the Protein Society, 13(4), 992–999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Umair Hanif
    • 1
    • 2
  • Adnan Yaseen
    • 1
  • Roquyya Gul
    • 1
    • 2
    • 3
  • Muhammad Usman Mirza
    • 4
  • Muhammad Hassan Nawaz
    • 1
  • Syed Shoaib Ahmed
    • 1
    • 2
  • Salman Aziz
    • 3
    • 5
  • Saima Chaudhary
    • 3
    • 6
  • Ayyaz Ali Khan
    • 3
    • 7
  • Muhammad Shoaib
    • 1
    • 2
    • 3
  1. 1.Institute of Molecular Biology and Biotechnology/Centre for Research in Molecular MedicineThe University of LahoreLahorePakistan
  2. 2.Centre for Research in Molecular MedicineThe University of LahoreLahorePakistan
  3. 3.Division of Molecular MedicineInstitute of Advanced Dental Sciences and ResearchLahorePakistan
  4. 4.Department of Pharmaceutical Sciences, Rega Institute for Medical ResearchUniversity of LeuvenLeuvenBelgium
  5. 5.Faculty of Medical and Allied Health SciencesSuperior UniversityLahorePakistan
  6. 6.Department of Oral PathologyUniversity of Health SciencesLahorePakistan
  7. 7.Department of Oral Health, Shaikh Zayed Medical ComplexFederal Postgraduate Medical InstituteLahorePakistan

Personalised recommendations