Applied Biochemistry and Biotechnology

, Volume 186, Issue 1, pp 109–121 | Cite as

Bamboo (Phyllostachys pubescens) as a Natural Support for Neutral Protease Immobilization

  • Lei-Peng Cao
  • Jing-Jing Wang
  • Ting Zhou
  • Roger Ruan
  • Yu-Huan Liu


Lignin polymers in bamboo (Phyllostachys pubescens) were decomposed into polyphenols at high temperatures and oxidized for the introduction of quinone groups from peroxidase extracted from bamboo shoots and catalysis of UV. According to the results of FT-IR spectra analysis, neutral proteases (NPs) can be immobilized on the oxidized lignin by covalent bonding formed by amine group and quinone group. The optimum condition for the immobilization of NPs on the bamboo bar was obtained at pH 7.0, 40 °C, and duration of 4 h; the amount of immobilized enzyme was up to 5 mg g−1 bamboo bar. The optimal pH for both free NP (FNP) and INP was approximately 7.0, and the maximum activity of INP was determined at 60 °C, whereas FNP presented maximum activity at 50 °C. The Km values of INP and FNP were determined as 0.773 and 0.843 mg ml−1, respectively; INP showed a lower Km value and Vmax, than FNP, which demonstrated that INP presented higher affinity to substrate. Compared to FNP, INP showed broader thermal and storage stability under the same trial condition. With respect to cost, INP presented considerable recycling efficiency for up to six consecutive cycles.


Bamboo Neutral protease (NP) Lignin Covalent binding Immobilization 


Funding Information

The work reported here was supported in part by the National Natural Science Foundation of China (21466022), international cooperation fund of the Ministry of Science and Technology (2014DFA61040), Jiangxi Province Key Science and Technology fund (20161BBF60057), and special fund for Jiangxi Province, thousands of people plan (GCXZ2014-124 100102102082).


  1. 1.
    Wang, G., Xu, A., Wan, Y., & Li, Q. (2013). Purification and characterization of a new metallo-neutral protease for beer brewing from Bacillus amyloliquefaciens SYB-001. Applied Biochemistry and Biotechnology, 170(8), 2021–2033. CrossRefPubMedGoogle Scholar
  2. 2.
    Wittrock, H., Jiang, M., Campbell, M., Jane, J., Anih, E., & Wang, E. (2008). A simplified isolation of high-amylose maize starch using neutral proteases. Starch-Stärke, 60(11), 601–608. CrossRefGoogle Scholar
  3. 3.
    Szot, G., Lee, M., Tavakol, M., Lang, J., Dekovic, F., Kerlan, R., & Posselt, A. (2009). Successful clinical islet isolation using a GMP-manufactured collagenase and neutral protease. Transplantation, 88(6), 753–756. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Seabra, I., & Gil, M. (2007). Cotton gauze bandage: a support for protease immobilization for use in biomedical applications. Brazilian Journal of Pharmaceutical Sciences, 43, 535–542.Google Scholar
  5. 5.
    Gilani, S., Najafpour, G., Moghadamnia, A., & Kamaruddin, A. (2016). Stability of immobilized porcine pancreas lipase on mesoporous chitosan beads: a comparative study. Journal of Molecular Catalysis B: Enzymatic, 133, 144–153. CrossRefGoogle Scholar
  6. 6.
    Fernandez-Lopez, L., Pedrero, S., Lopez-Carrobles, N., Gorines, B., Virgen-Ortíz, J., & Fernandez-Lafuente, R. (2017). Effect of protein load on stability of immobilized enzymes. Enzyme and Microbial Technology, 98, 18–25. CrossRefPubMedGoogle Scholar
  7. 7.
    Al-Qodah, Z., Al-Shannag, M., Al-Busoul, M., Penchev, I., & Orfali, W. (2017). Immobilized enzymes bioreactors utilizing a magnetic field: a review. Biochemical Engineering Journal, 121, 94–106. CrossRefGoogle Scholar
  8. 8.
    Jiang, Y., Sun, W., Wang, Y., Wang, W., Zhou, L., Gao, J., & Zhang, X. (2017). Protein-based inverse opals: a novel support for enzyme immobilization. Enzyme and Microbial Technology, 96, 42–46. CrossRefPubMedGoogle Scholar
  9. 9.
    Liu, Y., & Chen, J. (2016). Enzyme immobilization on cellulose matrixes. Journal of Bioactive and Compatible Polymers, 31(6), 553–567. CrossRefGoogle Scholar
  10. 10.
    Catia, A., Laura, D., & Lidietta, G. (2017). Tyrosinase immobilized on a hydrophobic membrane. Biotechnology and Applied Biochemistry, 64, 92–99.CrossRefGoogle Scholar
  11. 11.
    Li, J., Du, Y., Sun, L., Liang, H., Feng, T., Wei, Y., & Yao, P. (2006). Chitosaneous hydrogel beads for immobilizing neutral protease for application in the preparation of low molecular weight chitosan and chito-oligomers. Journal of Applied Polymer Science, 101, 3742–3750.Google Scholar
  12. 12.
    Bavaro, T., Cattaneo, G., Serra, I., Benucci, I., Pregnolato, M., & Terreni, M. (2017). Immobilization of neutral protease from Bacillus subtilis for regioselective hydrolysis of acetylated nucleosides: application to capecitabine synthesis. Molecules, 21, 1–p16.Google Scholar
  13. 13.
    Li, W., Wen, H., Shi, Q. Q., & Zheng, G. G. (2016). Study on immobilization of (+)-lactamase using a new type of epoxy graphene oxide carrier. Process Biochemistry, 51(2), 270–276. CrossRefGoogle Scholar
  14. 14.
    Tang, Z., Qian, J., & Shi, L. (2007). Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Applied Biochemistry and Biotechnology, 136(1), 77–96. CrossRefPubMedGoogle Scholar
  15. 15.
    Yang, D., Zhong, L., Yuan, T., Peng, X., & Sun, R. (2013). Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo. Industrial Crops and Products, 43, 141–149. CrossRefGoogle Scholar
  16. 16.
    Gong, W. H., Ran, Z. X., Ye, F. Y., & Zhao, G. H. (2017). Lignin from bamboo shoot shells as an activator and novel immobilizing support for a-amylase. Food Chemistry, 228, 455–462. CrossRefPubMedGoogle Scholar
  17. 17.
    Park, S., Kim, S. H., Kim, J. H., Yu, H., Kim, H. J., Yang, Y. H., Kim, H., Kim, Y. H., Ha, S. H., & Lee, S. H. (2015). Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase. Journal of Molecular Catalysis B: Enzyatic, 119, 33–39. CrossRefGoogle Scholar
  18. 18.
    Zdarta, J., Klapiszewski, L., Wysokowski, M., Norman, M., Kolodziejczak-radzimska, A., Moszynski, D., Ehrlich, H., Maciejewski, H., Stelling, A. L., & Jesionowski, T. (2015). Chitin-lignin material as a novel matrix for enzyme immobilization. Marine Drugs, 13(4), 2424–2446. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ajitha, S., & Sugunan, S. (2010). Tuning mesoporous molecular sieve SBA-15 for the immobilization of α-amylase. Journal of Porous Materials, 17(3), 341–349. CrossRefGoogle Scholar
  20. 20.
    Fei, X. Y., Chen, S. Y., Liu, D., Huang, C. J., & Zhang, Y. C. (2016). Comparison of amino and epoxy functionalized SBA-15 used for carbonic anhydrase immobilization. Journal of Bioscience and Bioengineering, 122(3), 314–321. CrossRefPubMedGoogle Scholar
  21. 21.
    Fan, L., Ruan, R., Liu, Y., Wang, Y., & Tu, C. (2015). Effects of extraction conditions on the characteristics of ethanol organosolv lignin from bamboo (Phyllostachys pubescens Mazel). BioResources, 10, 7998–8013.Google Scholar
  22. 22.
    Gao, G., Karaaslan, M., & Kadla, J. (2014). Hydrogen-bonding based reversible polymer networks based on Kraft lignin and poly(2-(Dimethylamino)ethyl methacrylate) series polymers. Macromolecular Materials and Engineering, 299(8), 990–1002. CrossRefGoogle Scholar
  23. 23.
    Satoshi, K., John, F., & Kadla. (2005). Kraft lignin/poly(ethylene oxide) blends: effect of lignin structure on miscibility and hydrogen bonding. Journal of Applied Polymer Science, 98, 1438–1444.Google Scholar
  24. 24.
    Chen, Z., & Wan, C. (2017). Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews, 73, 610–621. CrossRefGoogle Scholar
  25. 25.
    Dieste, A., Clavijo, L., Torres, A., Barbe, S., Oyarbide, I., Bruno, L., & Cassella, F. (2016). Lignin from Eucalyptus spp. kraft black liquor as biofuel. Energy & Fuels, 30(12), 10494–10498. CrossRefGoogle Scholar
  26. 26.
    Salma, K. B. G., Lobna, M., Sana, K., Kalthoum, C., Imene, O., & Abdelwaheb, C. (2016). Antioxidant enzymes expression in Pseudomonas aeruginosa exposed to UV-C radiation. Journal of Basic Microbiology, 56(7), 736–740. CrossRefPubMedGoogle Scholar
  27. 27.
    Tang, Z., Qian, J., & Shi, L. (2006). Characterizations of immobilized neutral proteinase on chitosan nano-particles. Process Biochemistry, 41(5), 1193–1197. CrossRefGoogle Scholar
  28. 28.
    Gong, W. H., Xiang, Z. Y., Ye, F. Y., & Zhao, G. H. (2016). Composition and structure of an antioxidant acetic acid lignin isolated from shoot shell of bamboo (Dendrocalamus Latiforus). Industrial Crops and Products, 91, 340–349. CrossRefGoogle Scholar
  29. 29.
    Ouyang, X., Ke, L., Qiu, X., Guo, Y., & Pang, Y. (2009). Sulfonation of alkali lignin and its potential use in dispersant for cement. Journal of Dispersion Science and Technology, 30(1), 1–6. CrossRefGoogle Scholar
  30. 30.
    Klinman, J., & Bonnot, F. (2004). Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chemical Reviews, 114, 4343–4365.CrossRefGoogle Scholar
  31. 31.
    Natasa, Z., Sekuljica • Nevena, Z., Prlainovic • Jelena, R., Jovanovic •Andrea, B., Stefanovic • Veljko, R., Djokic • Dusan, Z., Mijin • Zorica, D., & Knezevic, J. (2016). Immobilization of horseradish peroxidase onto kaolin. Bioprocess and Biosystems Engineering, 39, 461–472.CrossRefGoogle Scholar
  32. 32.
    Jiang, D., Long, S., Huang, J., Xiao, H., & Zhou, D. (2005). Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochemical Engineering Journal, 25(1), 15–23. CrossRefGoogle Scholar
  33. 33.
    Tyagi, C., Tomar, L. K., & Singh, H. (2009). Surface modification of cellulose filter paper by glycidyl methacrylate grafting for biomolecule immobilization: influence of grafting parameters and urease immobilization. Journal of Applied Polymer Science, 111(3), 1381–1390. CrossRefGoogle Scholar
  34. 34.
    Wang, W., Deng, L., Peng, Z., & Xiao, X. (2007). Study of the epoxydized magnetic hydroxyl particles as a carrier for immobilizing penicillin G acylase. Enzyme and Microbial Technology, 40(2), 255–261. CrossRefGoogle Scholar
  35. 35.
    Mateo, C., Palomo, J., Fernandez-Lorente, G., Guisan, J., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463. CrossRefGoogle Scholar
  36. 36.
    Bibi, Z., Shahid, F., Qader, S. A. U., & Aman, A. (2015). Agar-agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan. International Journal of Biological Macromolecules, 75, 121–127. CrossRefPubMedGoogle Scholar
  37. 37.
    Kenneth, V., Esguerra, L., & Jean-Philip, L. (2017). A bioinspired catalytic aerobic functionalization of phenols: regioselective construction of aromatic C-N and C-O bonds. Catalysis, 7, 3477–3482.Google Scholar
  38. 38.
    Atacan, K., Çakıroğlu, B., & Özacar, M. (2017). Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion. International Journal of Biological Macromolecules, 97, 148–155. CrossRefPubMedGoogle Scholar
  39. 39.
    Fernandez-Lopez, L., Rueda, N., Bartolome-Cabrero, R., Rodriguez, M., Albuquerque, T., Santos, J., & Fernandez-Lafuente, R. (2016). Improved immobilization and stabilization of lipase from Rhizomucor miehei on octyl-glyoxyl agarose beads by using CaCl2. Process Biochemistry, 51(1), 48–52. CrossRefGoogle Scholar
  40. 40.
    Zucca, P., & Sanjust, E. (2014). Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules, 19(9), 14139–14194. CrossRefPubMedGoogle Scholar
  41. 41.
    Srbová, J., Slováková, M., Křípalová, Z., Žárská, M., Špačková, M., Stránská, D., & Bílková, Z. (2016). Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. Reactive and Functional Polymers, 104, 38–44. CrossRefGoogle Scholar
  42. 42.
    Hou, J., Dong, G., Ye, Y., & Chen, V. (2014). Laccase immobilization on titania nanoparticles and titania-functionalized membranes. Journal of Membrane Science, 452, 229–240. CrossRefGoogle Scholar
  43. 43.
    Song, J., Song, W., Yeo, S., Kim, H., & Lee, S. (2017). Covalent immobilization of enzyme on aminated woven poly (lactic acid) via ammonia plasma: evaluation of the optimum immobilization conditions. Textile Research Journal, 87(10), 1177–1191. CrossRefGoogle Scholar
  44. 44.
    Junoi, S., Chisti, Y., & Hansupalak, N. (2015). Optimal conditions for deproteinizing natural rubber using immobilized alkaline protease. Journal of Chemical Technology and Biotechnology, 90(1), 185–193. CrossRefGoogle Scholar
  45. 45.
    Hu, T., Cheng, J., Zhang, B., Lou, W., & Zong, M. (2015). Immobilization of alkaline protease on amino-functionalized magnetic nanoparticles and its efficient use for preparation of oat polypeptides. Industrial & Engineering Chemistry Research, 54(17), 4689–4698. CrossRefGoogle Scholar
  46. 46.
    Wang, S., Zhang, C., Qi, B., Sui, X., Jiang, L., Li, Y., & Zhang, Q. (2014). Immobilized alcalase alkaline protease on the magnetic chitosan nanoparticles used for soy protein isolate hydrolysis. European Food Research and Technology, 239(6), 1051–1059. CrossRefGoogle Scholar
  47. 47.
    Gong, R., Zhang, J., Zhu, J., Wang, J., Lai, Q., & Jiang, B. (2013). Loofah sponge activated by periodate oxidation as a carrier for covalent immobilization of lipase. Korean Journal of Chemical Engineering, 30(8), 1620–1625. CrossRefGoogle Scholar
  48. 48.
    Nikolic, T., Milanovic, J., Kramar, A., Petronijevic, Z., Milenkovic, L., & Kostic, M. (2014). Preparation of cellulosic fibers with biological activity by immobilization of trypsin on periodate oxidized viscose fibers. Cellulose, 21(3), 1369–1380. CrossRefGoogle Scholar
  49. 49.
    An, N., Zhou, C., Zhang, X., Tong, D., & Yu, W. (2015). Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Applied Clay Science, 114, 283–296. CrossRefGoogle Scholar
  50. 50.
    Bibi, Z., Shahid, F., Qader, S., & Aman, A. (2015). Agar–agar entrapment increases the stability of endo-β-1, 4-xylanase for repeated biodegradation of xylan. International Journal of Biological Macromolecules, 75, 121–127. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lei-Peng Cao
    • 1
  • Jing-Jing Wang
    • 1
  • Ting Zhou
    • 1
  • Roger Ruan
    • 1
    • 2
  • Yu-Huan Liu
    • 1
  1. 1.State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of EducationNanchang UniversityNanchangChina
  2. 2.Center for Biorefining and Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaPaulUSA

Personalised recommendations