Advertisement

Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol

  • Jiong-feng Zhao
  • Jian-ping Lin
  • Li-rong Yang
  • Mian-bin WuEmail author
Article
  • 97 Downloads

Abstract

Nano-sized Fe3O4 was synthesized by chemical co-precipitation and subsequently modified with 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde to introduce aldehyde group on its surface. With the help of “interface activation” by adding sucrose esters-11 as surfactant, lipase from Rhizopus oryzae was successfully immobilized onto the carrier with great enhancement of activity. The hydrolysis activity of immobilized enzyme were 9.16 times and 31.6 times of free enzyme when p-nitrophenol butyrate and p-nitrophenol palmitate were used as substrates. The thermo-stability of immobilized enzyme was also enhanced compared to free enzyme. The immobilized enzyme was successfully applied in synthesis of 1,3-diacyglycerols (1,3-DAG). The specific esterification activity of immobilized enzyme was about 1.5 times of the free enzyme. The immobilized enzyme showed good region-selectivity towards 1,3-diacyglycerols and retained nearly 80% of its activity after reused for 60 times, revealing a good industrial application prospect.

Keywords

Nano-sized Fe3O4 Rhizopus oryzae lipase Interface activated Immobilization 1,3-diacyglycerols 

Notes

Funding

This work was supported by the National Natural Science Foundation of China [Grant No. 21376215]; National Basic Research Program of China [973, 2011CB710803]; and the National High-Tech Research and Development Program of China [863, 2012AA022302].

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Speranza, P., & Macedo, G. A. (2012). Lipase-mediated production of specific lipids with improved biological and physicochemical properties. Process Biochemistry, 47(12), 1699–1706.CrossRefGoogle Scholar
  2. 2.
    Xin, J.-y., Zhang, L., Chen, L.-l., Zheng, Y., Wu, X.-m., & Xia, C.-g. (2009). Lipase-catalyzed synthesis of ferulyl oleins in solvent-free medium. Food Chemistry, 112, 640–645.CrossRefGoogle Scholar
  3. 3.
    Soumanou, M. M., Pérignon, M., & Villeneuve, P. (2013). Lipase-catalyzed interesterification reactions for human milk fat substitutes production: a review. European Journal of Lipid Science and Technology, 115(3), 270–285.CrossRefGoogle Scholar
  4. 4.
    Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.CrossRefGoogle Scholar
  5. 5.
    Mohammadi, M., Habibi, Z., Dezvarei, S., Yousefi, M., Samadi, S., & Ashjari, M. (2014). Improvement of the stability and selectivity of Rhizomucor miehei lipase immobilized on silica nanoparticles: Selective hydrolysis of fish oil using immobilized preparations. Process Biochemistry, 49(8), 1314–1323.CrossRefGoogle Scholar
  6. 6.
    Kharrat, N., Ali, Y. B., Marzouk, S., Gargouri, Y.-T., & Karra-Châabouni, M. (2011). Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: comparison with the free enzyme. Process Biochemistry, 46(5), 1083–1089.CrossRefGoogle Scholar
  7. 7.
    Zhou, Z., Inayat, A., Schwieger, W., & Hartmann, M. (2012). Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous and Mesoporous Materials, 154, 133–141.CrossRefGoogle Scholar
  8. 8.
    Jordaan, J., Mathye, S., Simpson, C., & Brady, D. (2009). Improved chemical and physical stability of laccase after spherezyme immobilisation. Enzyme and Microbial Technology, 45(6-7), 432–435.CrossRefGoogle Scholar
  9. 9.
    Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R., & Fernandez-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), 6290–6307.CrossRefGoogle Scholar
  10. 10.
    Tecelão, C., Guillén, M., Valero, F., & Ferreira-Dias, S. (2012). Immobilized heterologous Rhizopus oryzae lipase: a feasible biocatalyst for the production of human milk fat substitutes. Biochemical Engineering Journal, 67, 104–110.CrossRefGoogle Scholar
  11. 11.
    Zhu, J., & Sun, G. (2012). Lipase immobilization on glutaraldehyde-activated nanofibrous membranes for improved enzyme stabilities and activities. Reactive and Functional Polymers, 72(11), 839–845.CrossRefGoogle Scholar
  12. 12.
    Li, B., Chen, Y., Chen, X., Liu, D., Niu, H., Xiong, J., Wu, J., Xie, J., Bai, J., & Ying, H. (2012). A novel immobilization method for nuclease P1 on macroporous absorbent resin with glutaraldehyde cross-linking and determination of its properties. Process Biochemistry, 47(4), 665–670.CrossRefGoogle Scholar
  13. 13.
    Blank, K., Morfill, J., & Gaub, H. E. (2006). Site-specific immobilization of genetically engineered variants of Candida antarctica lipase B. Chembiochem, 7(9), 1349–1351.CrossRefGoogle Scholar
  14. 14.
    Steen Redeker, E., Ta, D. T., Cortens, D., Billen, B., Guedens, W., & Adriaensens, P. (2013). Protein engineering for directed immobilization. Bioconjugate Chemistry, 24(11), 1761–1777.CrossRefGoogle Scholar
  15. 15.
    Norin, M., Olsen, O., Svendsen, A., Edholm, O., & Hult, K. (1993). Theoretical studies of Rhizomucor miehei lipase activation. Protein Engineering, Design and Selection, 6(8), 855–863.CrossRefGoogle Scholar
  16. 16.
    Derewenda, U., Brzozowski, A. M., Lawson, D. M., & Derewenda, Z. S. (1992). Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry, 31(5), 1532–1541.CrossRefGoogle Scholar
  17. 17.
    Sarda, L., & Desnuelle, P. (1958). Actions of pancreatic lipase on esters in emulsions. Biochimica et Biophysica Acta, 30(3), 513–521.CrossRefGoogle Scholar
  18. 18.
    Verger, R. (1997). ‘Interfacial activation’ of lipases: facts and artifacts. Trends in Biotechnology, 15(1), 32–38.CrossRefGoogle Scholar
  19. 19.
    Kartal, F. (2016). Enhanced esterification activity through interfacial activation and cross-linked immobilization mechanism of Rhizopus oryzae lipase in a nonaqueous medium. Biotechnology Progress, 32(4), 899–904.CrossRefGoogle Scholar
  20. 20.
    Mine, Y., Fukunaga, K., Itoh, K., Yoshimoto, M., Nakao, K., & Sugimura, Y. (2003). Enhanced enzyme activity and enantioselectivity of lipases in organic solvents by crown ethers and cyclodextrins. Journal of Bioscience and Bioengineering, 95(5), 441–447.CrossRefGoogle Scholar
  21. 21.
    Liu, T., Zhao, Y., Wang, X., Li, X., & Yan, Y. (2013). A novel oriented immobilized lipase on magnetic nanoparticles in reverse micelles system and its application in the enrichment of polyunsaturated fatty acids. Bioresource Technology, 132, 99–102.CrossRefGoogle Scholar
  22. 22.
    Bondar’, L. A., Abramov, N. V., Mishchenko, V. N., & Gorbik, P. P. (2010). Synthesis and properties of magnetite-poly (aminopropylsiloxane) composites. Colloid Journal, 72(1), 1–5.CrossRefGoogle Scholar
  23. 23.
    Qian, S., Wang, C., Wang, H., Yu, F., Zhang, C., & Yu, H. (2015). Synthesis and characterization of surface-functionalized paramagnetic nanoparticles and their application to immobilization of α-acetolactate decarboxylase. Process Biochemistry, 50(9), 1388–1393.CrossRefGoogle Scholar
  24. 24.
    Xu, J., Ju, C., Sheng, J., Wang, F., Zhang, Q., Sun, G., & Sun, M. (2013). Synthesis and characterization of magnetic nanoparticles and its application in lipase immobilization. Bulletin of the Korean Chemical Society, 34(8), 2408–2412.CrossRefGoogle Scholar
  25. 25.
    Mahmood, I., Ahmad, I., Chen, G., & Huizhou, L. (2013). A surfactant-coated lipase immobilized in magnetic nanoparticles for multicycle ethyl isovalerate enzymatic production. Biochemical Engineering Journal, 73, 72–79.CrossRefGoogle Scholar
  26. 26.
    Adlercreutz, P. (2013). Immobilisation and application of lipases in organic media. Chemical Society Reviews, 42(15), 6406–6436.CrossRefGoogle Scholar
  27. 27.
    Hita, E., Robles, A., Camacho, B., Ramírez, A., Esteban, L., Jiménez, M. J., Muñío, M. M., González, P. A., & Molina, E. (2007). Production of structured triacylglycerols (STAG) rich in docosahexaenoic acid (DHA) in position 2 by acidolysis of tuna oil catalyzed by lipases. Process Biochemistry, 42(3), 415–422.CrossRefGoogle Scholar
  28. 28.
    Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics, 17(2), 1247–1248.CrossRefGoogle Scholar
  29. 29.
    Liu, Y., Li, Y., Li, X. M., & He, T. (2013). Kinetics of (3-aminopropyl) triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles. Langmuir, 29(49), 15275–15282.CrossRefGoogle Scholar
  30. 30.
    Hu, T.-G., Cheng, J.-H., Zhang, B.-B., Lou, W.-Y., & Zong, M.-H. (2015). Immobilization of alkaline protease on amino-functionalized magnetic nanoparticles and its efficient use for preparation of oat polypeptides. Industrial & Engineering Chemistry Research, 54(17), 4689–4698.CrossRefGoogle Scholar
  31. 31.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.CrossRefGoogle Scholar
  32. 32.
    Pencreac'h, G., & Baratti, J. C. (1996). Hydrolysis of p-nitrophenyl palmitate in n-heptane by the pseudomonas cepacia lipase: a simple test for the determination of lipase activity in organic media. Enzyme and Microbial Technology, 18(6), 417–422.CrossRefGoogle Scholar
  33. 33.
    Vorderwülbecke, T., Kieslich, K., & Erdmann, H. (1992). Comparison of lipases by different assays. Enzyme and Microbial Technology, 14(8), 631–639.CrossRefGoogle Scholar
  34. 34.
    Butterfield, D. A., Bhattacharyya, D., Daunert, S., & Bachas, L. (2001). Catalytic biofunctional membranes containing site-specifically immobilized enzyme arrays: a review. Journal of Membrane Science, 181(1), 29–37.CrossRefGoogle Scholar
  35. 35.
    Niu, W.-N., Li, Z.-P., Zhang, D.-W., Yu, M.-R., & Tan, T.-W. (2006). Improved thermostability and the optimum temperature of Rhizopus arrhizus lipase by directed evolution. Journal of Molecular Catalysis B: Enzymatic, 43(1-4), 33–39.CrossRefGoogle Scholar
  36. 36.
    Minning, S., Schmidt-Dannert, C., & Schmid, R. D. (1998). Functional expression of Rhizopus oryzae lipase in Pichia pastoris: high-level production and some properties. Journal of Biotechnology, 66(2-3), 147–156.CrossRefGoogle Scholar
  37. 37.
    Zhang, W., Qiu, J., Zang, L., Sakai, E., & Feng, H. (2015). Preparation of functionalized magnetic silica nanospheres for the cellulase immobilization. Nano, 10(01), 1550013.CrossRefGoogle Scholar
  38. 38.
    Xie, W., & Ma, N. (2009). Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy & Fuels, 23(3), 1347–1353.CrossRefGoogle Scholar
  39. 39.
    Persson, M., Mladenoska, I., Wehtje, E., & Adlercreutz, P. (2002). Preparation of lipases for use in organic solvents. Enzyme and Microbial Technology, 31(6), 833–841.CrossRefGoogle Scholar
  40. 40.
    Guillén, M., Benaiges, M. D., & Valero, F. (2011). Comparison of the biochemical properties of a recombinant lipase extract from Rhizopus oryzae expressed in Pichia pastoris with a native extract. Biochemical Engineering Journal, 54(2), 117–123.CrossRefGoogle Scholar
  41. 41.
    Yang, T., Zhang, H., Mu, H., Sinclair, A. J., & Xu, X. (2004). Diacylglycerols from butterfat: production by glycerolysis and short-path distillation and analysis of physical properties. Journal of the American Oil Chemists' Society, 81(10), 979–987.CrossRefGoogle Scholar
  42. 42.
    Zhao, Y., Liu, J., Deng, L., Wang, F., & Tan, T. (2011). Optimization of Candida sp. 99-125 lipase catalyzed esterification for synthesis of monoglyceride and diglyceride in solvent-free system. Journal of Molecular Catalysis B: Enzymatic, 72(3-4), 157–162.CrossRefGoogle Scholar
  43. 43.
    Liu, N., Wang, Y., Zhao, Q., Zhang, Q., & Zhao, M. (2011). Fast synthesis of 1,3-DAG by lecitase (R) ultra-catalyzed esterification in solvent-free system. European Journal of Lipid Science and Technology, 113(8), 973–979.CrossRefGoogle Scholar
  44. 44.
    Esteban, L., Jiménez, M. J., Hita, E., González, P. A., Martín, L., & Robles, A. (2011). Production of structured triacylglycerols rich in palmitic acid at sn-2 position and oleic acid at sn-1,3 positions as human milk fat substitutes by enzymatic acidolysis. Biochemical Engineering Journal, 54(1), 62–69.CrossRefGoogle Scholar
  45. 45.
    Chen, L., Xu, Z., Dai, H., & Zhang, S. (2010). Facile synthesis and magnetic properties of monodisperse Fe3O4/silica nanocomposite microspheres with embedded structures via a direct solution-based route. Journal of Alloys and Compounds, 497(1-2), 221–227.CrossRefGoogle Scholar
  46. 46.
    Tang, J., Myers, M., And, K. A. B., & Brus, L. E. (2003). Magnetite Fe3O4 nanocrystals: spectroscopic observation of aqueous oxidation kinetics. Journal of Physical Chemistry B, 107(30), 7501–7506.CrossRefGoogle Scholar
  47. 47.
    Feitknecht, W., & Gallagher, K. J. (1970). Mechanisms for the oxidation of Fe3O4. Nature, 228(5271), 548–549.CrossRefGoogle Scholar
  48. 48.
    von der Haar, D., Stabler, A., Wichmann, R., & Schweiggert-Weisz, U. (2015). Enzyme-assisted process for DAG synthesis in edible oils. Food Chemistry, 176, 263–270.CrossRefGoogle Scholar
  49. 49.
    Liu, N., Wang, Y., Zhao, Q., Cui, C., Fu, M., & Zhao, M. (2012). Immobilisation of lecitase® ultra for production of diacylglycerols by glycerolysis of soybean oil. Food Chemistry, 134(1), 301–307.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations