Applied Biochemistry and Biotechnology

, Volume 188, Issue 2, pp 450–459 | Cite as

Gibberellin Promotes Cell Growth and Induces Changes in Fatty Acid Biosynthesis and Upregulates Fatty Acid Biosynthetic Genes in Chlorella vulgaris UMT-M1

  • Malinna Jusoh
  • Saw Hong Loh
  • Ahmad Aziz
  • Thye San ChaEmail author


Microalgae lipids and oils are potential candidates for renewable biofuels and nutritional inventions. Recent studies from our lab have shown that two plant hormones, auxin and jasmonic acid, influence microalgae growth and fatty acid accumulation. Therefore, in this study, a high oil-producing strain Chlorella vulgaris UMT-M1 was selected for hormonal study using gibberellin (GA). Exogenous GA3 was applied to early stationary culture of C. vulgaris UMT-M1. Results showed that GA3 gradually increases the cell density of C. vulgaris to up to 42% on days after treatment (DAT)-8 and also capable of delaying the algal senescence. However, the increment in cell density did not enhance the total oil production albeit transient modification of fatty acid compositions was observed for saturated (SFA) and polyunsaturated (PUFA) fatty acids. This illustrates that GA3 only promotes cell division and growth but not the oil accumulation. In addition, application of GA3 in culture medium was shown to promote transient increment of palmitic (C16:0) and stearic (C18:0) acids from DAT-4 to DAT-6 and these changes are correlated with the expression of β-ketoacyl ACP synthase I (KAS I) gene.


Fatty acid Gene expression Lipid Microalgae Plant hormone 


Funding Information

This project was financially supported by the Science Fund (Project No. 02-01-12-SF0089) from the Ministry of Science, Technology and Innovation (MOSTI), Malaysia.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent for Publication

All authors approved the manuscript.

Supplementary material

12010_2018_2937_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14 kb)


  1. 1.
    Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRefGoogle Scholar
  2. 2.
    Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486–501.CrossRefGoogle Scholar
  3. 3.
    Becker, B., & Marin, B. (2009). Streptophyte algae and the origin of embryophytes. Annals of Botany, 103(7), 999–1004.CrossRefGoogle Scholar
  4. 4.
    Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., & De Clerck, O. (2012). Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31(1), 1–46.CrossRefGoogle Scholar
  5. 5.
    Msanne, J., Xu, D., Konda, A. R., Casas-Mollano, J. A., Awada, T., Cahoon, E. B., & Cerutti, H. (2012). Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry, 75, 50–59.CrossRefGoogle Scholar
  6. 6.
    Cha, T. S., Chen, J. W., Goh, E. G., Aziz, A., & Loh, S. H. (2011). Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application. Bioresource Technology, 102(22), 10633–10640.CrossRefGoogle Scholar
  7. 7.
    Srivastava, G., Nishchal, & Goud, V. V. (2017). Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresource Technology, 242, 244–252.CrossRefGoogle Scholar
  8. 8.
    Xia, L., Song, S. X., & Hu, C. X. (2016). High temperature enhances lipid accumulation in nitrogen-deprived Scenedesmus obtusus XJ-15. Journal of Applied Phycology, 28(2), 831–837.CrossRefGoogle Scholar
  9. 9.
    Bai, X., Song, H., Lavoie, M., Zhu, K., Su, Y., Ye, H., Chen, S., Fu, Z., & Qian, H. (2016). Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Scientific Reports, 6(1), 25494.CrossRefGoogle Scholar
  10. 10.
    Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–112.CrossRefGoogle Scholar
  11. 11.
    Williams, P. J., & Laurens, L. M. (2010). Microalgae as biodiesel & biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energy and Environmental Science, 3(5), 554–590.CrossRefGoogle Scholar
  12. 12.
    Jusoh, M., Loh, S. H., Chuah, T. S., Ahmad, A., & Cha, T. S. (2015). Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry, 111, 65–71.CrossRefGoogle Scholar
  13. 13.
    Jusoh, M., Loh, S. H., Chuah, T. S., Ahmad, A., & Cha, T. S. (2015). Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Research, 9, 14–20.CrossRefGoogle Scholar
  14. 14.
    Cowling, R. J., & Harberd, N. P. (1999). Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. Journal of Experimental Botany, 50(337), 1351–1357.CrossRefGoogle Scholar
  15. 15.
    Reid, J. B., Ross, J. J., & Swain, S. M. (1992). Internode length in Pisum: a new, slender mutant with elevated levels of C19 gibberellins. Planta, 188(4), 462–467.CrossRefGoogle Scholar
  16. 16.
    Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y., & Yamaguchi, S. (2003). Gibberellin biosynthesis and response during Arabidopsis seed germination. The Plant Cell, 15(7), 1591–1604.CrossRefGoogle Scholar
  17. 17.
    Stirk, W., Bálint, P., Tarkowská, D., Novák, O., Strnad, M., Ördög, V., & van Staden, J. (2013). Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiology and Biochemistry, 70, 348–353.CrossRefGoogle Scholar
  18. 18.
    Blanc, G., Duncan, G., Agarkova, I., Borodovsky, M., Gurnon, J., Kuo, A., Lindquist, E., Lucas, S., Pangilinan, J., Polle, J., Salamov, A., Terry, A., Yamada, T., Dunigan, D. D., Grigoriev, I. V., Claverie, J. M., & Van Etten, J. L. (2010). The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses and cryptic sex. Plant Cell, 22(9), 2943–2955.CrossRefGoogle Scholar
  19. 19.
    Vandenbussche, F., Fierro, A. C., Wiedemann, G., Reski, R., & Van Der Straeten, D. (2007). Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biology, 7(1), 65.CrossRefGoogle Scholar
  20. 20.
    Hedden, P., Phillips, A. L., Rojas, M. C., Carrera, E., & Tudzynski, B. (2001). Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? Journal of Plant Growth Regulation, 20(4), 319–331.CrossRefGoogle Scholar
  21. 21.
    Hunt, R. W., Chinnasamy, S., Bhatnagar, A., & Das, K. (2010). Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Applied Biochemistry and Biotechnology, 162(8), 2400–2414.CrossRefGoogle Scholar
  22. 22.
    Guillard, R. R. L., & Ryther, J. H. (1962). Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) gran. Canadian Journal of Microbiology, 8(2), 229–239.CrossRefGoogle Scholar
  23. 23.
    Park, W. K., Yoo, G., Moon, M., Kim, C., Choi, Y. E., & Yang, J. W. (2013). Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Applied Biochemistry and Biotechnology, 171(5), 1128–1142.CrossRefGoogle Scholar
  24. 24.
    Tate, J., Gutierrez-Wing, M. T., Rusch, K., & Benton, M. (2013). The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: A review. Journal of Plant Growth Regulation, 32(2), 417–428.CrossRefGoogle Scholar
  25. 25.
    Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108.CrossRefGoogle Scholar
  26. 26.
    Kappers, I. F., Jordi, W., Maas, F. M., Stoopen, G. M., & Van Der Plas, L. H. (1998). Gibberellin and phytochrome control senescence in alstroemeria leaves independently. Physiologia Plantarum, 103(1), 91–98.CrossRefGoogle Scholar
  27. 27.
    Li, J., Yu, K., Wei, J., Ma, Q., Wang, B., & Yu, D. (2010). Gibberellin retards chlorophyll degradation during senescence of Paris polyphylla. Biologia Plantarum, 54(2), 395–399.CrossRefGoogle Scholar
  28. 28.
    Lockhart, J. A., & Gottschall, V. (1961). Fruit-induced & apical senescence in Pisum sativum L. Plant Physiology, 36(4), 389–398.CrossRefGoogle Scholar
  29. 29.
    Rosenvasser, S., Mayak, S., & Friedman, H. (2006). Increase in reactive oxygen species (ROS) and in senescence-associated gene transcript (SAG) levels during dark-induced senescence of Pelargonium cuttings, and the effect of gibberellic acid. Plant Science, 170(4), 873–879.CrossRefGoogle Scholar
  30. 30.
    Siaut, M., Cuine, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylides, C., Li-Beisson, Y., & Peltier, G. (2011). Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology, 11(1), 7.CrossRefGoogle Scholar
  31. 31.
    Chen, M., Du, X., Zhu, Y., Wang, Z., Hua, S., Li, Z., Guo, W., Zhang, G., Peng, J., & Jiang, L. (2012). Seed fatty acid reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant, Cell and Environment, 35(12), 2155–2169.CrossRefGoogle Scholar
  32. 32.
    He, Y., Fukushige, H., Hildebrand, D. F., & Gan, S. (2002). Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiology, 128(3), 876–884.CrossRefGoogle Scholar
  33. 33.
    Lei, A., Chen, H., Shen, G., Hu, Z., Chen, L., & Wang, J. (2012). Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnology for Biofuels, 5, 18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Marine BiotechnologyUniversiti Malaysia TerengganuKuala TerengganuMalaysia
  2. 2.School of Fundamental SciencesUniversiti Malaysia TerengganuKuala TerengganuMalaysia
  3. 3.School of Marine and Environmental SciencesUniversiti Malaysia TerengganuKuala TerengganuMalaysia

Personalised recommendations