Advertisement

Applied Biochemistry and Biotechnology

, Volume 188, Issue 2, pp 514–526 | Cite as

Cytotoxic Tolerance of Healthy and Cancerous Bone Cells to Anti-microbial Phenolic Compounds Depend on Culture Conditions

  • Ozge Karadas
  • Gulistan Mese
  • Engin OzciviciEmail author
Article
  • 92 Downloads

Abstract

Carnosol and carnosic acid are polyphenolic compounds found in rosemary and sage with known anti-oxidant, anti-inflammatory, and anti-microbial properties. Here, we addressed the potential use of carnosol and carnosic acid for in vitro bone tissue engineering applications, specifically depending on their cytotoxic effects on bone marrow stromal and stem cells, and osteosarcoma cells in monolayer and 3D cultures. Carnosol and carnosic acid displayed a bacteriostatic effect on Gram-positive bacteria, especially on S. aureus. The viability results indicated that bone marrow stromal cells and bone marrow stem cells were more tolerant to the presence of carnosol compared to osteosarcoma cells. 3D culture conditions increased this tolerance further for healthy cells, while not affecting the cytotoxic potential of carnosol for osteosarcoma cells. Carnosic acid was found to be more cytotoxic for all cell types used in the study. Results suggest that phenolic compounds might have potential use as anti-microbial and anti-carcinogenic agents for bone tissue engineering with further optimization for controlled release.

Keywords

Carnosol Carnosic acid Bone tissue engineering Filter paper 3D culture 

Notes

Acknowledgements

We are thankful for the helpful discussions with Ozden Yalcın-Ozuysal, PhD, and Ferda Soyer Donmez, PhD. The Izmir Institute of Technology, Biotechnology and Bioengineering Research Center is also appreciated for instrumental support.

Funding information

Financial support was from The Scientific and Technological Research Council of Turkey (215S862 - EO) and Turkish Academy of Sciences (Young Investigator Award - EO).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Akpinar, B., Obuch, J., Fukami, N., & Pokharel, S. S. (2015). Unusual presentation of a pancreatic cyst resulting from osteosarcoma metastasis. World Journal of Gastroenterology, 21(27), 8452–8457.CrossRefGoogle Scholar
  2. 2.
    Al-Mulhim, F. A., Baragbah, M. A., Sadat-Ali, M., Alomran, A. S., & Azam, M. Q. (2014). Prevalence of surgical site infection in orthopedic surgery: a 5-year analysis. International Surgery, 99(3), 264–268.CrossRefGoogle Scholar
  3. 3.
    Anil-Inevi, M., Yaman, S., Yildiz, A. A., Mese, G., Yalcin-Ozuysal, O., Tekin, H. C., & Ozcivici, E. (2018). Biofabrication of in situ self assembled 3D cell cultures in a weightlessness environment generated using magnetic levitation. Scientific Reports, 8(1), 7239.CrossRefGoogle Scholar
  4. 4.
    Balachandran, C., Arun, Y., Duraipandiyan, V., Ignacimuthu, S., Balakrishna, K., & Al-Dhabi, N. A. (2014). Antimicrobial and cytotoxicity properties of 2,3-dihydroxy-9,10-anthraquinone isolated from Streptomyces galbus (ERINLG-127). Applied Biochemistry and Biotechnology, 172(7), 3513–3528.CrossRefGoogle Scholar
  5. 5.
    Barni, M. V., Carlini, M. J., Cafferata, E. G., Puricelli, L., & Moreno, S. (2012). Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells. Oncology Reports, 27(4), 1041–1048.CrossRefGoogle Scholar
  6. 6.
    Baskan, O., Mese, G., & Ozcivici, E. (2017). Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells. Proceedings of the Institution of Mechanical Engineers. Part H, 231(2), 160–168.CrossRefGoogle Scholar
  7. 7.
    Bauer, J., Kuehnl, S., Rollinger, J. M., Scherer, O., Northoff, H., Stuppner, H., Werz, O., & Koeberle, A. (2012). Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E-2 Synthase-1. The Journal of Pharmacology and Experimental Therapeutics, 342(1), 169–176.CrossRefGoogle Scholar
  8. 8.
    Birtic, S., Dussort, P., Pierre, F. X., Bily, A. C., & Roller, M. (2015). Carnosic acid. Phytochemistry, 115, 9–19.CrossRefGoogle Scholar
  9. 9.
    Borrás-Linares, I., Stojanović, Z., Quirantes-Piné, R., Arráez-Román, D., Švarc-Gajić, J., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2014). Rosmarinus Officinalis leaves as a natural source of bioactive compounds. International Journal of Molecular Sciences, 15(11), 20585–20606.CrossRefGoogle Scholar
  10. 10.
    Buonocore, G. G., Sinigaglia, M., Corbo, M. R., Bevilacqua, A., Notte, E. L., & Nobile, M. A. D. (2004). Controlled release of antimicrobial compounds from highly Swellable polymers. Journal of Food Protection, 67(6), 1190–1194.CrossRefGoogle Scholar
  11. 11.
    Caballero, M. G., Jimenez, A. L., Torres, M. A. M., & Quesada, A. R. (2012). Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary. The FEBS Journal, 279, 92–92.Google Scholar
  12. 12.
    Camci-Unal, G., Laromaine, A., Hong, E., Derda, R., & Whitesides, G. M. (2016). Biomineralization guided by paper templates. Scientific Reports-Uk, 6, 27693.CrossRefGoogle Scholar
  13. 13.
    Cattaneo, L., Cicconi, R., Mignogna, G., Giorgi, A., Mattei, M., & Graziani, G. (2015). Anti-proliferative effect of Rosmarinus officinalis L. extract on human melanoma A375 cells. Plos One, 10, e0132439.CrossRefGoogle Scholar
  14. 14.
    Cooper, G. M., Mooney, M. P., Gosain, A. K., Campbell, P. G., Losee, J. E., & Huard, J. (2010). Testing the “critical-size” in calvarial bone defects: revisiting the concept of a critical-sized defect (CSD). Plastic and Reconstructive Surgery, 125(6), 1685–1692.CrossRefGoogle Scholar
  15. 15.
    Covello, S. P., Humphreys, T. R., & Lee, J. B. (2003). A case of extraskeletal osteosarcoma with metastasis to the skin. Journal of the American Academy of Dermatology, 49(1), 124–127.CrossRefGoogle Scholar
  16. 16.
    Demiray, L., & Ozcivici, E. (2015). Bone marrow stem cells adapt to low-magnitude vibrations by altering their cytoskeleton during quiescence and osteogenesis. Turkish Journal of Biology, 39, 88–97.CrossRefGoogle Scholar
  17. 17.
    Dimitriou, R., Jones, E., McGonagle, D., & Giannoudis, P. V. (2011). Bone regeneration: Current concepts and future directions. BMC Medicine, 9(1), 66–66.CrossRefGoogle Scholar
  18. 18.
    Einbond, L. S., Wu, H. A., Kashiwazaki, R., He, K., Roller, M., Su, T., Wang, X. M., & Goldsberry, S. (2012). Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with curcumin. Fitoterapia, 83(7), 1160–1168.CrossRefGoogle Scholar
  19. 19.
    Gelderblom, H., Jinks, R. C., Sydes, M., Bramwell, V. H. C., van Glabbeke, M., Grimer, R. J., Hogendoorn, P. C. W., McTiernan, A., Lewis, I. J., Nooij, M. A., Taminiau, A. H. M., & Whelan, J. (2011). Survival after recurrent osteosarcoma: data from 3 European osteosarcoma intergroup (EOI) randomized controlled trials. European Journal of Cancer, 47(6), 895–902.CrossRefGoogle Scholar
  20. 20.
    Habtemariam, S. (2016). The therapeutic potential of rosemary (Rosmarinus officinalis) Diterpenes for Alzheimer’s disease. Evidence-based Complementary and Alternative Medicine: eCAM, 2016, 2680409.CrossRefGoogle Scholar
  21. 21.
    Jiménez, R. A., Millán, D., Suesca, E., Sosnik, A., & Fontanilla, M. R. (2015). Controlled release of an extract of Calendula officinalis flowers from a system based on the incorporation of gelatin-collagen microparticles into collagen I scaffolds: design and in vitro performance. Drug Delivery and Translational Research, 5(3), 209–218.CrossRefGoogle Scholar
  22. 22.
    Johnson, J. J. (2011). Carnosol: a promising anti-cancer and anti-inflammatory agent. Cancer Letters, 305(1), 1–7.CrossRefGoogle Scholar
  23. 23.
    Johnson, J. J., Syed, D. N., Suh, Y., Heren, C. R., Saleem, M., Siddiqui, I. A., & Mukhtar, H. (2010). Disruption of androgen and estrogen receptor activity in prostate cancer by a novel dietary diterpene carnosol: implications for chemoprevention. Cancer Prevention Research, 3(9), 1112–1123.CrossRefGoogle Scholar
  24. 24.
    Jordan, M. J., Lax, V., Rota, M. C., Loran, S., & Sotomayor, J. A. (2012). Relevance of carnosic acid, carnosol, and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of Rosmarinus officinalis (L.) Methanolic extracts. Journal of Agricultural and Food Chemistry, 60(38), 9603–9608.CrossRefGoogle Scholar
  25. 25.
    Kapoor, S. K., & Thiyam, R. (2015). Management of infection following reconstruction in bone tumors. Journal of Clinical Orthopaedics and Trauma, 6(4), 244–251.CrossRefGoogle Scholar
  26. 26.
    Kempf-Bielack, B., Bielack, S. S., Jürgens, H., Branscheid, D., Berdel, W. E., Exner, G. U., Göbel, U., Helmke, K., Jundt, G., Kabisch, H., Kevric, M., Klingebiel, T., Kotz, R., Maas, R., Schwarz, R., Semik, M., Treuner, J., Zoubek, A., & Winkler, K. (2005). Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the cooperative osteosarcoma study group (COSS). Journal of Clinical Oncology, 23(3), 559–568.CrossRefGoogle Scholar
  27. 27.
    Kontogianni, V. G., Tomic, G., Nikolic, I., Nerantzaki, A. A., Sayyad, N., Stosic-Grujicic, S., Stojanovic, I., Gerothanassis, I. P., & Tzakos, A. G. (2013). Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chemistry, 136(1), 120–129.CrossRefGoogle Scholar
  28. 28.
    Lee, V. (2014). Bone tumours in childhood and adolescence. Paediatrics and Child Health (United Kingdom), 24(4), 143–147.CrossRefGoogle Scholar
  29. 29.
    Moreno, S., Scheyer, T., Romano, C. S., & Vojnov, A. A. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research, 40(2), 223–231.CrossRefGoogle Scholar
  30. 30.
    Moreno, S., Sana, A. M. O., Gaya, M., Barni, M. V., Castro, O. A., & van Baren, C. (2012). Rosemary Compounds as Nutraceutical Health Products, Food Additive, Yehia El-Samragy, IntechOpen.  https://doi.org/10.5772/30883.
  31. 31.
    Nakatani, N., & Inatani, R. (1981). Structure of Rosmanol, a new antioxidant from rosemary (Rosmarinus officinalis L.). Agricultural and Biological Chemistry, 45(10), 2385–2386.CrossRefGoogle Scholar
  32. 32.
    Olcum, M., Baskan, O., Karadas, O., & Ozcivici, E. (2016). Application of low intensity mechanical vibrations for bone tissue maintenance and regeneration. Turkish Journal of Biology, 40, 300–307.CrossRefGoogle Scholar
  33. 33.
    Oryan, A., Alidadi, S., & Moshiri, A. (2015). Osteosarcoma: current concepts, challenges and future directions. Current Orthopaedic Practice, 26(2), 181–198.CrossRefGoogle Scholar
  34. 34.
    Osasan, S., Zhang, M. Y., Shen, F., Paul, P. J., Persad, S., & Sergi, C. (2016). Osteogenic sarcoma: a 21st century review. Anticancer Research, 36(9), 4391–4398.CrossRefGoogle Scholar
  35. 35.
    Ozcivici, E., Luu, Y. K., Adler, B., Qin, Y. X., Rubin, J., Judex, S., & Rubin, C. T. (2010). Mechanical signals as anabolic agents in bone. Nature Reviews Rheumatology, 6(1), 50–59.CrossRefGoogle Scholar
  36. 36.
    Park, M. Y., & Sung, M. K. (2015). Carnosic acid inhibits lipid accumulation in 3T3-L1 adipocytes through attenuation of fatty acid desaturation. Journal of Cancer Prevention, 20(1), 41–49.CrossRefGoogle Scholar
  37. 37.
    Phuengkham, H., Teeranachaideekul, V., Chulasiri, M., & Nasongkla, N. (2016). Preparation and optimization of chlorophene-loaded nanospheres as controlled release antimicrobial delivery systems. Pharmaceutical Development and Technology, 21(1), 8–13.CrossRefGoogle Scholar
  38. 38.
    Ribeiro, M., Monteiro, F. J., & Ferraz, M. P. (2012). Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter, 2(4), 176–194.CrossRefGoogle Scholar
  39. 39.
    Rightmire, E., Zurakowski, D., & Vrahas, M. (2008). Acute infections after fracture repair: management with hardware in place. Clinical Orthopaedics and Related Research, 466(2), 466–472.CrossRefGoogle Scholar
  40. 40.
    Schroeder, C. P., Van Anglen, L. J., Dretler, R. H., Adams, J. S., Prokesch, R. C., Luu, Q., & Krinsky, A. H. (2017). Outpatient treatment of osteomyelitis with telavancin. International Journal of Antimicrobial Agents, 50(1), 93–96.CrossRefGoogle Scholar
  41. 41.
    Song, Z., Borgwardt, L., Høiby, N., Wu, H., Sørensen, T. S., & Borgwardt, A. (2013). Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthopedic Reviews, 5, e14.CrossRefGoogle Scholar
  42. 42.
    Tabata, K., Kim, M., Makino, M., Satoh, M., Satoh, Y., & Suzuki, T. (2012). Phenolic diterpenes derived from Hyptis incana induce apoptosis and G2/M arrest of Neuroblastoma cells. Anticancer Research, 32(11), 4781–4789.Google Scholar
  43. 43.
    Takeuchi, A., Lewis, V. O., Satcher, R. L., Moon, B. S., & Lin, P. P. (2014). What are the factors that affect survival and relapse after local recurrence of osteosarcoma? Clinical Orthopaedics and Related Research, 472(10), 3188–3195.CrossRefGoogle Scholar
  44. 44.
    Tamamyan, G., Dominkus, M., Lang, S., Diakos, C., Mittheisz, E., Horcher, E., Holter, W., Zoubek, A., Bielack, S., & Kager, L. (2015). Multiple relapses in high-grade osteosarcoma: when to stop aggressive therapy? Pediatric Blood & Cancer, 62(3), 529–530.CrossRefGoogle Scholar
  45. 45.
    Tiwari, A. (2012). Current concepts in surgical treatment of osteosarcoma. Journal of Clinical Orthopaedics and Trauma, 3(1), 4–9.CrossRefGoogle Scholar
  46. 46.
    Tsai, C. W., Lin, C. Y., Lin, H. H., & Chen, J. H. (2011). Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochemical Research, 36(12), 2442–2451.CrossRefGoogle Scholar
  47. 47.
    Udalamaththa, V. L., Jayasinghe, C. D., & Udagama, P. V. (2016). Potential role of herbal remedies in stem cell therapy: proliferation and differentiation of human mesenchymal stromal cells. Stem Cell Research & Therapy, 7(1), 110.CrossRefGoogle Scholar
  48. 48.
    Vergara, D., Simeone, P., Bettini, S., Tinelli, A., Valli, L., Storelli, C., Leo, S., Santino, A., & Maffia, M. (2014). Antitumor activity of the dietary diterpene carnosol against a panel of human cancer cell lines. Food & Function, 5(6), 1261–1269.CrossRefGoogle Scholar
  49. 49.
    Visanji, J. M., Thompson, D. G., & Padfield, P. J. (2006). Induction of G(2)/M phase cell cycle arrest by carnosol and carnosic acid is associated with alteration of cyclin A and cyclin B1 levels. Cancer Letters, 237(1), 130–136.CrossRefGoogle Scholar
  50. 50.
    Wang, C.-S., Wu, P.-K., Chen, C.-F., Chen, W.-M., Liu, C.-L., & Chen, T.-H. (2015). Bone–prosthesis composite with rotating hinged-knee prosthesis in limb salvage surgery for high-grade sarcoma around the knee. The Journal of Arthroplasty, 30(1), 90–94.CrossRefGoogle Scholar
  51. 51.
    Wang, Y., Wang, J., Hao, H., Cai, M., Wang, S., Ma, J., Li, Y., Mao, C., & Zhang, S. (2016). In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano, 10(11), 9927–9937.CrossRefGoogle Scholar
  52. 52.
    Weckesser, S., Engel, K., Simon-Haarhaus, B., Wittmer, A., Pelz, K., & Schempp, C. M. (2007). Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine, 14(7-8), 508–516.CrossRefGoogle Scholar
  53. 53.
    Wong, K. C., Lee, V., Shing, M. M. K., & Kumta, S. (2013). Surgical resection of relapse may improve postrelapse survival of patients with localized osteosarcoma. Clinical Orthopaedics and Related Research, 471(3), 814–819.CrossRefGoogle Scholar
  54. 54.
    Yang, J., & Wang, N. (2016). Analysis of the molecular mechanism of osteosarcoma using a bioinformatics approach. Oncology Letters, 12(5), 3075–3080.CrossRefGoogle Scholar
  55. 55.
    Yildiz-Ozturk, E., Gulce-Iz, S., Anil, M., & Yesil-Celiktas, O. (2017). Cytotoxic responses of carnosic acid and doxorubicin on breast cancer cells in butterfly-shaped microchips in comparison to 2D and 3D culture. Cytotechnology, 69(2), 337–347.CrossRefGoogle Scholar
  56. 56.
    Zhang, X., Wang, W., Xie, Y., Zhang, Y., Wang, X., Guo, X., & Ma, X. (2006). Proliferation, viability, and metabolism of human tumor and normal cells cultured in microcapsule. Applied Biochemistry and Biotechnology, 134(1), 61–76.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BioengineeringIzmir Institute of TechnologyUrlaTurkey
  2. 2.Department of Molecular Biology and GeneticsIzmir Institute of TechnologyUrlaTurkey

Personalised recommendations